分析 (1)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案;
(2)根據(jù)BC的長(zhǎng),可得關(guān)于m的方程,根據(jù)解方程,可得m的值;
(3)根據(jù)周長(zhǎng)公式,可得答案;
(4)利用直線PC的斜率求出直線PE的斜率,并求出直線PE的參數(shù)方程,討論點(diǎn)E在x軸與y軸的情況,并分別求出點(diǎn)E的參數(shù)坐標(biāo),根據(jù)PC=PE,利用兩點(diǎn)間距離公式求解.此題也可用開鎖法進(jìn)行求解.
解答 解:(1)當(dāng)m=1時(shí),拋物線的解析式為y=-x2+4x.
當(dāng)y=0時(shí),-x2+4x=0,解得x1=0,x2=4,即A點(diǎn)坐標(biāo)為(4,0);
(2)當(dāng)y=-x2+4mx中x=1時(shí),y=4m-1,B(1,4m-1).且拋物線的對(duì)稱軸為x=-4m2×(−1)=2m.
當(dāng)點(diǎn)B在對(duì)稱軸左側(cè)時(shí),即m>12時(shí),BC=2(2m-1)=4m-2.
當(dāng)BC=12時(shí),4m-2=12.m=58,這條拋物線的解析式為y=-x2+52x.
當(dāng)BC=12時(shí),2-4m=12.m=38,這條拋物線的解析式為y=-x2+32x.
(3)當(dāng)點(diǎn)B在對(duì)稱軸左側(cè),同時(shí)點(diǎn)P在點(diǎn)B的下方,即13<m<12時(shí),
l=2[2(1-2m)+(4m-1-m)],l=-2m+2.
(4)分三種情況:P在對(duì)稱軸左側(cè),P(1,m),B(1,4m-1),C(4m-1,4m-1),
BC=4m-2,BP=3m-1,
①若∠CPQ=90°,PC=PQ,如圖1,
此時(shí),△CBP≌△PFQ,
∴CB=PF,即4m-2=m,解得m=23,
②若∠PCQ=90°,CP=CQ,如圖2,
此時(shí),△QFP≌△CDQ,
∴DF=CD,即4m-1=4m-1,方程無(wú)解;
∴此種情況不成立.
③如圖3,
B(1,4m-1),P(1,m),C(4m-1,4m-1),
若∠CPQ=90°,PC=PQ,△CBP≌△QFC,
BP=CF,即3m-1=4m-1,解得m=0(舍),
④如圖4,
∠CQP=90°,CQ=CP,
△CBP≌△PFQ,
BP=QF,即4m-1-m=1,解得m=23;
⑤如圖5,
∠CQP=90°,CQ=CP,
△CBP≌△PFQ,
BC=PF,即2-4m=m,解得m=25;
綜上所述:m=23,m=25.
點(diǎn)評(píng) 本題考查了二次函數(shù)綜合題,利用自變量與函數(shù)值的對(duì)應(yīng)關(guān)系求點(diǎn)的坐標(biāo);利用BC得出關(guān)于m的方程是解題關(guān)鍵;要分類討論,以防遺漏;利用全等三角形的性質(zhì)得出關(guān)于m的方程是解題關(guān)鍵,要分類討論,以防遺漏.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y1<y2<y3 | B. | y3<y2<y1 | C. | y3<y1<y2 | D. | y2<y1<y3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com