分析 (1)利用待定系數法求出二次函數的解析式,再求出其頂點坐標即可;
(2)在坐標系內畫出函數圖象,連接OP,根據S四邊形OBPA=S△OBP+S△OAP即可得出結論;
(3)根據函數圖象與坐標軸的交點即可得出結論.
解答 解:(1)設此函數的解析式為y=ax2+bx+c(a≠0),
∵二次函數的圖象經過A(3,0),B(0,-3),C(-2,5)三點,
∴$\left\{\begin{array}{l}0=9a+3b+c\\-3=c\\ 5=4a-2b+c\end{array}\right.$,解得$\left\{\begin{array}{l}a=1\\ b=-2\\ c=-3\end{array}\right.$,
∴二次函數的解析式為y=x2-2x-3=(x-1)2-4,
∴函數圖象頂點P的坐標為(1,-4);
(2)如圖所示,連接OP,
則S四邊形OBPA=S△OBP+S△OAP=$\frac{1}{2}$×3×1+$\frac{1}{2}$×3×4=$\frac{3}{2}$+6=$\frac{15}{2}$;
(3)∵由函數圖象可知,此函數圖象與x軸的交點為(-1,0),(3,0),
∴當x<-1或x>3時,y>0;
當-1<x<3時,y<0.
點評 本題考查的是二次函數與不等式,能根據題意畫出圖形,利用數形結合求解是解答此題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com