如圖所示,已知A點的坐標(biāo)為(0,3),⊙A的半徑為1,點B在軸上.

①若點B的坐標(biāo)為(4,0),⊙B的半徑為3,試判斷⊙A與⊙B的位置關(guān)系;

②能否在軸的正半軸上確定一點B,使⊙B與y軸相切,并且與⊙A相切?請說明理由.

 

【答案】

(1)外離 (2)B(4,0) 

【解析】

試題分析:(1)根據(jù)題意得已知A點的坐標(biāo)為(0,3),在y軸的正半軸上;若點B的坐標(biāo)為(4,0),它在軸的正半軸上,那么⊙A、⊙B的圓心距=,由⊙A的半徑為1,⊙B的半徑為3,半徑之和為1+3=4,因為5>1+3=4,所以⊙A與⊙B的位置關(guān)系是外離

(2)假設(shè)在軸的正半軸上確定一點B,設(shè)B(x,0),根據(jù)題意得,使⊙B與y軸相切,⊙B的半徑為x,因為使⊙B與⊙A相切,所以⊙A、⊙B的圓心距=⊙A、⊙B的圓心距的半徑之和,因為⊙A、⊙B的圓心距=,⊙A、⊙B的圓心距的半徑之和=1+x,所以,解得x=4,所以B點的坐標(biāo)為(4,0)

考點:兩圓相離、相切

點評:本題考查兩圓相離、相切,考生解答本題的關(guān)鍵是掌握兩圓的位置關(guān)系,熟悉兩圓相離、相切的概念和性質(zhì),掌握勾股定理的內(nèi)容

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A點的坐標(biāo)為(6,0),B是y軸正半軸上的一動點,直線AB交直線y=
1
2
x
于點C,矩形ADEF的頂點D、E分別在直線y=
1
2
x
和直線AB上,頂點F在x軸上.
(1)若點B的坐標(biāo)為(0,4).
①求直線AB所表示的函數(shù)關(guān)系式;
②求△OAC的面積;
③求矩形ADEF的邊DE與AD的長;
(2)若矩形ADEF是正方形,求B點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A點的坐標(biāo)為(-1,0),點B的坐標(biāo)是(9,0)以AB為直徑作⊙O′,交y軸負半軸于點C,連接AC、BC,過A、B、C作拋物線
(1)求拋物線的解析式;
(2)點E是AC延長線上的一點,∠BCE的平分線CD交⊙O′于點D,連接BD求BD直線的解析式;
(3)在(2)的條件下,點P是直線BC下方的拋物線上一動點,當(dāng)點P運動到什么位置時,△PCD的面積是△BCD面積的
13
,求此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知A點的坐標(biāo)為(0,3),⊙A的半徑為1,點B在x軸上.
①若點B的坐標(biāo)為(4,0),⊙B的半徑為3,試判斷⊙A與⊙B的位置關(guān)系;
②能否在x軸的正半軸上確定一點B,使⊙B與y軸相切,并且與⊙A相切?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知P點的坐標(biāo)是(a,b),則sinα等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省如皋市石莊初級中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖所示,已知A點的坐標(biāo)為(0,3),⊙A的半徑為1,點B在軸上.

①若點B的坐標(biāo)為(4,0),⊙B的半徑為3,試判斷⊙A與⊙B的位置關(guān)系;
②能否在軸的正半軸上確定一點B,使⊙B與y軸相切,并且與⊙A相切?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案