【題目】如圖是一圓形水管的截面圖,已知⊙O的半徑OA=13,水面寬AB=24,則水的深度CD是 .
【答案】8
【解析】解:∵⊙O的半徑OA=13,水面寬AB=24,OD⊥AB,
∴OD=OA=13,AC= AB=12,
在Rt△AOC中,OC= =5,
∴CD=OD﹣OC=13﹣5=8.
所以答案是:8.
【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對垂徑定理的推論的理解,了解推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條。煌普2 :圓的兩條平行弦所夾的弧相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自開展“學(xué)生每天鍛煉1小時”活動后,我市某中學(xué)根據(jù)學(xué)校實際情況,決定開設(shè)A:毽子,B:籃球,C:跑步,D:跳繩四種運動項目.為了了解學(xué)生最喜歡哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:
(1)該校本次調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請將兩個統(tǒng)計圖補充完整;
(3)在本次調(diào)查的學(xué)生中隨機抽取1人,他喜歡“跑步”的概率有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某愛心企業(yè)在政府的支持下投入資金,準(zhǔn)備修建一批室外簡易的足球場和籃球場,供市民免費使用,修建1個足球場和1個籃球場共需8.5萬元,修建2個足球場和4個籃球場共需27萬元.
(1)求修建一個足球場和一個籃球場各需多少萬元?
(2)該企業(yè)預(yù)計修建這樣的足球場和籃球場共20個,投入資金不超過90萬元,求至少可以修建多少個足球場?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點D,DE⊥AC于點E,BE交⊙O于點F,連接AF,AF的延長線交DE于點P.
(1)求證:DE是⊙O的切線;
(2)求tan∠ABE的值;
(3)若OA=2,求線段AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳池有水4000m3 , 先放水清洗池子.同時,工作人員記錄放水的時間x(單位:分鐘)與池內(nèi)水量y(單位:m3) 的對應(yīng)變化的情況,如下表:
時間x(分鐘) | … | 10 | 20 | 30 | 40 | … |
水量y(m3) | … | 3750 | 3500 | 3250 | 3000 | … |
(1)根據(jù)上表提供的信息,當(dāng)放水到第80分鐘時,池內(nèi)有水多少m3?
(2)請你用函數(shù)解析式表示y與x的關(guān)系,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D是⊙O上的四點,∠BAC=∠CAD,P是線段CD延長線上一點,且∠PAD=∠ABD.
(1)請判斷△BCD的形狀(不要求證明);
(2)求證:PA是⊙O的切線;
(3)求證:AP2﹣DP2=DPBC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明在樓上點A處測量大樹的高,在A處測得大樹頂部B的仰角為25°,測得大樹底部C的俯角為45°.已知點A距地面的高度AD為12m,求大樹的高度BC.(最后結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=10,AC=BD=2,點P是CD上一動點,分別以AP、PB為邊向上、向下作正方形APEF和PHKB,設(shè)正方形對角線的交點分別為O1、O2 , 當(dāng)點P從點C運動到點D時,線段O1O2中點G的運動路徑的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2 . C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè)).
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形?如果存在,請求出點G的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com