(2013年四川瀘州4分)如圖,點P1(x1,y1),點P2(x2,y2),…,點Pn(xn,yn)在函數(shù)(x>0)的圖象上,△P1OA1,△P2A1A2,△P3A2A3,…,△PnAn1An都是等腰直角三角形,斜邊OA1,A1A2,A2A3,…,An1An都在x軸上(n是大于或等于2的正整數(shù)),則點P3的坐標(biāo)是    ;點Pn的坐標(biāo)是     (用含n的式子表示).

 

 

【答案】

。

【解析】過點P1作P1E⊥x軸于點E,過點P2作P2F⊥x軸于點F,過點P3作P3G⊥x軸于點G,

∵△P1OA1是等腰直角三角形,∴P1E=OE=A1E=OA1。

設(shè)點P1的坐標(biāo)為(a,a)(a>0),

將點P1(a,a)代入,可得a=1。

∴點P1的坐標(biāo)為(1,1)。∴OA1=2a。

設(shè)點P2的坐標(biāo)為(b+2,b),

將點P1(b+2,b)代入,可得b=﹣1,

∴點P2的坐標(biāo)為(+1,﹣1)。∴A1F=A2F=2﹣2,OA2=OA1+A1A2=2。

設(shè)點P3的坐標(biāo)為(c+2,c),將點P1(c+2,c)代入y=,可得c=。

∴點P3的坐標(biāo)為

綜上可得:P1的坐標(biāo)為(1,1),P2的坐標(biāo)為(+1,﹣1),P3的坐標(biāo)為b。

總結(jié)規(guī)律可得:Pn坐標(biāo)為:

考點:探索規(guī)律題(圖形的變化類),反比例函數(shù)綜合題,曲線上點的坐標(biāo)與方程的關(guān)系,等腰直角三角形的性質(zhì)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川瀘州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川瀘州10分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD2=CA•CB;

(2)求證:CD是⊙O的切線;

(3)過點B作⊙O的切線交CD的延長線于點E,若BC=12,tan∠CDA=,求BE的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川瀘州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川瀘州8分)如圖,已知函數(shù)與反比例函數(shù)(x>0)的圖象交于點A.將的圖象向下平移6個單位后與雙曲線交于點B,與x軸交于點C.

(1)求點C的坐標(biāo);

(2)若,求反比例函數(shù)的解析式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川瀘州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川瀘州8分)如圖,為了測出某塔CD的高度,在塔前的平地上選擇一點A,用測角儀測得塔頂D的仰角為30°,在A、C之間選擇一點B(A、B、C三點在同一直線上).用測角儀測得塔頂D的仰角為75°,且AB間的距離為40m.

(1)求點B到AD的距離;

(2)求塔高CD(結(jié)果用根號表示).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川瀘州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川瀘州7分)某中學(xué)為落實市教育局提出的“全員育人,創(chuàng)辦特色學(xué)校”的會議精神,決心打造“書香校園”,計劃用不超過1900本科技類書籍和1620本人文類書籍,組建中、小型兩類圖書角共30個.已知組建一個中型圖書角需科技類書籍80本,人文類書籍50本;組建一個小型圖書角需科技類書籍30本,人文類書籍60本.

(1)符合題意的組建方案有幾種?請你幫學(xué)校設(shè)計出來;

(2)若組建一個中型圖書角的費(fèi)用是860元,組建一個小型圖書角的費(fèi)用是570元,試說明(1)中哪種方案費(fèi)用最低,最低費(fèi)用是多少元?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川瀘州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川瀘州7分)某校開展以感恩教育為主題的藝術(shù)活動,舉辦了四個項目的比賽,它們分別是演講、唱歌、書法、繪畫.要求每位同學(xué)必須參加,且限報一項活動.以九年級(1)班為樣本進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計圖.請你結(jié)合圖示所給出的信息解答下列問題.

(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?

(2)求出扇形統(tǒng)計圖中參加書法比賽的學(xué)生所在扇形圓心角的度數(shù)?

(3)若該校九年級學(xué)生有600人,請你估計這次藝術(shù)活動中,參加演講和唱歌的學(xué)生各有多少人?

 

查看答案和解析>>

同步練習(xí)冊答案