【題目】已知⊙O半徑為,AB是⊙O的一條弦,且AB=3,則弦AB所對(duì)的圓周角度數(shù)是_____.

【答案】60°120°

【解析】

先根據(jù)題意畫出圖形,連接OAOB,過OOFAB,由垂徑可求出AF的長,根據(jù)特殊角的三角函數(shù)值可求出∠AOF的度數(shù),由圓周角定理及圓內(nèi)接四邊形的性質(zhì)即可求出答案.

解:如圖所示,


連接OA、OB,過OOFAB,則AF=AB,∠AOF=AOB,
OA=AB=3
AF=AB=×3=,
sinAOF= ,
∴∠AOF=60°,
∴∠AOB=2AOF=120°,
∴優(yōu)弧AB所對(duì)圓周角=AOB=×120°=60°,
在劣弧AB上取點(diǎn)E,連接AE、EB
∴∠AEB=180°-60°=120°
故答案為:60°120°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是24,則△OAB的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B、CD⊙O上的四個(gè)點(diǎn),ABBC,BDAC于點(diǎn)E,連接CD、AD

1)求證:DB平分∠ADC;

2)若BE3ED6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于點(diǎn)

當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證

1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線段之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線段之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(4,3).

(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式.

(2)直接寫出該拋物線開口方向和頂點(diǎn)坐標(biāo).

(3)直接在所給坐標(biāo)平面內(nèi)畫出這條拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸于AB兩點(diǎn),直線y=kx+b經(jīng)過點(diǎn)A,與這條拋物線的對(duì)稱軸交于點(diǎn)M1,2),且點(diǎn)M與拋物線的頂點(diǎn)N關(guān)于x軸對(duì)稱.

1)求拋物線的函數(shù)關(guān)系式;

2)設(shè)題中的拋物線與直線的另一交點(diǎn)為C,已知Px,y)為線段AC上一點(diǎn),過點(diǎn)PPQx軸,交拋物線于點(diǎn)Q.求線段PQ的最大值及此時(shí)P坐標(biāo);

3)在(2)的條件下,求AQC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,BC4,tanB2,以AB的中點(diǎn)D為圓心,r為半徑作⊙D,如果點(diǎn)B在⊙D內(nèi),點(diǎn)C在⊙D外,那么r可以取( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是原點(diǎn),兩點(diǎn)的坐標(biāo)分別為,.

1)以點(diǎn)為位似中心,在軸的左側(cè)將擴(kuò)大為原來的兩倍(即新圖與原圖的相似比為),畫出圖形,并寫出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo);

2)如果內(nèi)部一點(diǎn)的坐標(biāo)為,寫出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結(jié)論正確的是____________

查看答案和解析>>

同步練習(xí)冊(cè)答案