精英家教網 > 初中數學 > 題目詳情

【題目】在一個不透明的布袋中,有個紅球,個白球,這些球除顏色外都相同.

1)攪勻后從中任意摸出個球,摸到紅球的概率是________;

2)攪勻后先從中任意摸出個球(不放回),再從余下的球中任意摸出個球.求兩次都摸到紅球的概率.(用樹狀圖或表格列出所有等可能出現的結果)

【答案】1;(2)見解析,.

【解析】

1)根據古典概型概率的求法,求摸到紅球的概率.

(2)利用樹狀圖法列出兩次摸球的所有可能的結果,求兩次都摸到紅球的概率.

1)一般地,如果在一次試驗中,有種可能的結果,并且它們發(fā)生的可能性都相等,事件包含其中的種結果,那么事件發(fā)生的概率為,則摸到紅球的概率為.

2)兩次摸球的所有可能的結果如下:

有樹狀圖可知,共有種等可能的結果,兩次都摸出紅球有種情況,

(兩次都摸處紅球)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小穎和小紅兩位同學在學習概率時,做投擲骰子(質地均勻的正方體)實驗,他們共做了60次實驗,實驗的結果如下:

(1)計算“3點朝上的頻率和“5點朝上的頻率.

(2)小穎說:根據實驗,一次實驗中出現5點朝上的概率最大;小紅說:如果投擲600次,那么出現6點朝上的次數正好是100次.小穎和小紅的說法正確嗎?為什么?

(3)小穎和小紅各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數之和為3的倍數的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為弘揚泰山文化,某校舉辦了泰山詩文大賽活動,從中隨機抽取部分學生的比賽成績,根據成績(成績都高于50分),繪制了如下的統(tǒng)計圖表(不完整):

組別

分數

人數

1

90x≤100

8

2

80x≤90

a

3

70x≤80

10

4

60x≤70

b

5

50x≤60

3

請根據以上信息,解答下列問題:

1)求出a,b的值;

2)計算扇形統(tǒng)計圖中5所在扇形圓心角的度數;

3)若該校共有1800名學生,那么成績高于80分的共有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商品的進價為每件20元,售價為每件30元,每月可賣出180.如果該商品的售價每上漲1元,就會少賣出10件,但每件售價不能高于35元,設每件商品的售價上漲x元(x為整數)時,月銷售利潤為y.

1)求yx之間的函數解析式,并直接寫出自變量x的取值范圍.

2)當每件商品的售價定為多少元時,可獲得的月利潤最大?最大月利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班為了解學生一學期做義工的時間情況,對全班50名學生進行調查,按做義工的時間(單位:小時),將學生分成五類: 類( ),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.

根據以上信息,解答下列問題:

1 類學生有 人,補全條形統(tǒng)計圖;

2類學生人數占被調查總人數的 %;

(3)從該班做義工時間在的學生中任選2人,求這2人做義工時間都在 中的概率

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1:在平面直角坐標系內,O為坐標原點,線段AB兩端點在坐標軸上且點A(﹣4,0),點B0,3),將AB向右平移4個單位長度至OC的位置

1)直接寫出點C的坐標   ;

2)如圖2,過點CCDx軸于點D,在x軸正半軸有一點E1,0),過點Ex軸的垂線,在垂線上有一動點P,直接寫出:D的坐標   ;三角形PCD的面積為   ;

3)如圖3,在(2)的條件下,連接AC,當△ACP的面積為時,直接寫出點P的坐標   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點A、B,再將△A0B沿直錢CD折疊,使點A與點B重合.折痕CD與x軸交于點C,與AB交于點D.

(1)點A的坐標為  ;點B的坐標為  ;

(2)求OC的長度,并求出此時直線BC的表達式;

(3)直線BC上是否存在一點M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】校文學社在全校范圍內隨機抽取一部分讀者對社刊中最感興趣的文學欄目進行了投票.每人一張選票,每張選票只能投給一個欄目,經統(tǒng)計無棄權票,根據投票結果繪制的條形統(tǒng)計圖如下:

(1)這次參加投票的總人數為  

(2)若全校有3000名讀者,估計其中對“寫作指導”最感興趣的人數.

(3)在全校3000名讀者中,若對某個欄目最感興趣的人數少于300人將會影響社刊的銷售,這個欄目就需要被撤換.請通過計算判斷,“新書上架”欄目是否需要被撤換.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=ax2經過點A2,1).

1 a的值;

2 如圖1,點Mx軸負半軸上一點,線段AM交拋物線于N.若OMN為等腰三角形,求點N的坐標;

3 如圖2,直線y=kx2k3交拋物線于B、C兩點,過點CCPx軸,交直線AB于點P,請說明點P一定在某條確定的直線上運動,求出這條直線的解析式.

查看答案和解析>>

同步練習冊答案