【題目】李老師將1個黑球和若干個白球放入一個不透明的口袋中并攪勻,讓學生進行摸球試驗,每次摸出一個球(放回),下表是活動進行中的一組統(tǒng)計數(shù)據.
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù)m | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的頻率 | 0.23 | 0.21 | 0.30 | _____ | _____ | _____ |
(1)補全上表中的有關數(shù)據,根據上表數(shù)據估計從袋中摸出一個黑球的概率是______.(結果都保留小數(shù)點后兩位)
(2)估算袋中白球的個數(shù)為________.
(3)在(2)的條件下,若小強同學有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計算出兩次都摸出白球的概率.
【答案】表格內數(shù)據:0.26,0.25,0.25 (1)0.25;(2)3;(3).
【解析】
(1)直接利用頻數(shù)÷總數(shù)=頻率求出答案;
(2)設袋子中白球有x個,利用表格中數(shù)據估算出得到黑球的頻率列出關于x的分式方程,
(1)251÷1000=0.251;
∵大量重復試驗事件發(fā)生的頻率逐漸穩(wěn)定到0.25附近0.25,
∴估計從袋中摸出一個球是黑球的概率是0.25;
(2)設袋中白球為x個,
=0.25,
x=3.
答:估計袋中有3個白球.
(3)由題意畫樹狀圖得:
由樹狀圖可知,所有可能出現(xiàn)的結果共有16種,這些結果出現(xiàn)的可能性相等,其中兩次都摸出白球的有9種情況.
所以P(兩次都摸出白球)=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A(2,1),B兩點.
(1)求出反比例函數(shù)與一次函數(shù)的表達式;
(2)請直接寫出B點的坐標,并指出使反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習了正多邊形之后,小馬同學發(fā)現(xiàn)利用對稱、旋轉等方法可以計算等分正多邊形面積的方案.
(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;
(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;
(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,tanA=,M,N分別在邊AD,BC上,將四邊形AMNB沿MN翻折,使AB的對應線段EF經過頂點D,當EF⊥AD時,的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2.
(1)求y與x之間的函數(shù)關系式;
(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解題:學習了二次根式后,你會發(fā)現(xiàn)一些含有根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,我們來進行以下的探索:
設a+b=(m+n)2(其中a,b,m,n都是正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣就得出了把類似a+b的式子化為平方式的方法,請仿照上述方法探索并解決下列問題:
(1)當a,b,m,n都為正整數(shù)時,若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a= ,b= .
(2)若a﹣4=(m﹣n)2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF=90°,延長EF交BC的延長線于點G.
(1)求證:△ABE∽△EGB.
(2)若AB=4,求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC內接于⊙O,CA=CB,過點A作AE∥BC,交⊙O于點E,過點C作⊙O的切線交AE的延長線于點D,已知AB=6,BE=3.
(1)求證:四邊形ABCD為平行四邊形;
(2)延長AO交DC的延長線于點F,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.
(1)求二次函數(shù)y=ax2+2x+c的表達式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;
(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com