【題目】如圖,Rt△A'BC'是由Rt△ABC繞B點順時針旋轉而得,且點A,B,C'在同一條直線上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,則Rt△ABC旋轉到Rt△A'BC'所掃過的面積為________.
【答案】π+2
【解析】
先利用勾股定理計算出AC=2,再利用三角函數得到∠ABC=60°,接著根據旋轉的性質得到∠A′B′C′=∠ABC=60°,△ABC≌△A′B′C′,所以∠ABA′=120°,
然后根據扇形面積公式,利用Rt△ABC旋轉到Rt△A'BC'所掃過的面積=S扇形ABA′+S△A′B′C′進行計算即可.
∵∠C=90°,BC=2,AB=4,
∴AC==2,
∵tan∠ABC==,
∴∠ABC=60°,
∵Rt△A'BC'是由Rt△ABC繞B點順時針旋轉而得,且點A,B,C'在同一條直線上,
∴∠A′B′C′=∠ABC=60°,△ABC≌△A′B′C′,
∴∠ABA′=120°,
∴Rt△ABC旋轉到Rt△A'BC'所掃過的面積=S扇形ABA′+S△A′B′C′
=.
故答案為.
科目:初中數學 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若CD=2AD,⊙O的直徑為10,求線段AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.
(1)判斷直線EF與⊙O的位置關系,并說明理由;
(2)若∠A=30°,求證:DG=DA;
(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,4a),B(3a,0),△AOB的面積是150.
(1)求點A的坐標;
(2)點P是射線AB上的一點,點P的橫坐標為t,連接PO,若△PBO的面積為S,試用含有t的式子表示S.
(3)在(2)的條件下,若點P在第一象限內,且S△PBO=126,過P作PE⊥AB,交y軸于點D,交x軸于點E,且OB=OD,連接AE,M為AE上一點,連接OM交PE于點N,若∠EMN+∠ABE=180°,求點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在的內接四邊形中,,,點在上.
(1)求的度數;
(2)若的半徑為,則的長為多少?
(3)連接,,當時,恰好是的內接正邊形的一邊,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
(材料)如圖,對任意符合條件的直角三角形BAC,繞其銳角頂點逆時針旋轉90°得△DAE,所以∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據圖形我們就能證明勾股定理: .
(請回答)如圖是任意符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將直角三角板ABC按如圖1放置,直角頂點C與坐標原點重合,直角邊AC、BC分別與x軸和y軸重合,其中∠ABC=30°.將此三角板沿y軸向下平移,當點B平移到原點O時運動停止.設平移的距離為m,平移過程中三角板落在第一象限部分的面積為s,s關于m的函數圖象(如圖2所示)與m軸相交于點P(,0),與s軸相交于點Q.
(1)試確定三角板ABC的面積;
(2)求平移前AB邊所在直線的解析式;
(3)求s關于m的函數關系式,并寫出Q點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°,在邊AB上取點D,在CA的延長線上取點E,使ACCE+ABBD=BC2
求證:(1)∠CEB>∠ABC;
(2)BE=2CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,點E、F、G分別為邊AB、BC、CD的中點,若△EFG的面積為4,則四邊形ABCD的面積為( 。
A. 8 B. 12 C. 16 D. 18
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com