【題目】如圖,半徑為5的⊙A中,弦BC,ED所對(duì)的圓心角分別是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,則弦BC的弦心距等于(
A.
B.
C.4
D.3

【答案】D
【解析】解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,
∵∠BAC+∠EAD=180°,
而∠BAC+∠BAF=180°,
∴∠DAE=∠BAF,

∴DE=BF=6,
∵AH⊥BC,
∴CH=BH,
而CA=AF,
∴AH為△CBF的中位線,
∴AH= BF=3.
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和圓周角定理的相關(guān)知識(shí)可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M是第一象限內(nèi)一點(diǎn),過M的直線分別交x軸,y軸的正半軸于A,B兩點(diǎn),且M是AB的中點(diǎn).以O(shè)M為直徑的⊙P分別交x軸,y軸于C,D兩點(diǎn),交直線AB于點(diǎn)E(位于點(diǎn)M右下方),連結(jié)DE交OM于點(diǎn)K.
(1)若點(diǎn)M的坐標(biāo)為(3,4), ①求A,B兩點(diǎn)的坐標(biāo);
②求ME的長(zhǎng).
(2)若 =3,求∠OBA的度數(shù).
(3)設(shè)tan∠OBA=x(0<x<1), =y,直接寫出y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=8,E是邊AB上一點(diǎn),且AE= AB.⊙O經(jīng)過點(diǎn)E,與邊CD所在直線相切于點(diǎn)G(∠GEB為銳角),與邊AB所在直線交于另一點(diǎn)F,且EG:EF= :2.當(dāng)邊AD或BC所在的直線與⊙O相切時(shí),AB的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其主視圖如圖.⊙O與矩形ABCD的邊BC,AD分別相切和相交(E,F(xiàn)是交點(diǎn)),已知EF=CD=8,則⊙O的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本中有一道作業(yè)題: 有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.問加工成的正方形零件的邊長(zhǎng)是多少mm?
小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.


(1)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少mm?請(qǐng)你計(jì)算.
(2)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購(gòu)買A,B兩種型號(hào)的污水處理設(shè)備共10臺(tái).已知用90萬(wàn)元購(gòu)買A型號(hào)的污水處理設(shè)備的臺(tái)數(shù)與用75萬(wàn)元購(gòu)買B型號(hào)的污水處理設(shè)備的臺(tái)數(shù)相同,每臺(tái)設(shè)備價(jià)格及月處理污水量如下表所示:

污水處理設(shè)備

A型

B型

價(jià)格(萬(wàn)元/臺(tái))

m

m﹣3

月處理污水量(噸/臺(tái))

220

180


(1)求m的值;
(2)由于受資金限制,指揮部用于購(gòu)買污水處理設(shè)備的資金不超過165萬(wàn)元,問有多少種購(gòu)買方案?并求出每月最多處理污水量的噸數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從A地到B地的公路需經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直的公路AB的長(zhǎng);
(2)問公路改直后比原來(lái)縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,點(diǎn)D在邊BC上,∠DAB=∠B,點(diǎn)E在邊AC上,滿足AECD=ADCE.
(1)求證:DE∥AB;
(2)如果點(diǎn)F是DE延長(zhǎng)線上一點(diǎn),且BD是DF和AB的比例中項(xiàng),聯(lián)結(jié)AF.求證:DF=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(a+2+ 2與|b+2﹣ |互為相反數(shù),求(a+2b)2﹣(2b+a)(2b﹣a)﹣2a2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案