操作1:如圖1,一三角形紙片ABC,分別取AB、AC的中點(diǎn)D、E,連接DE,沿DE將紙片剪開(kāi),并將其中的△ADE紙片繞點(diǎn)E旋轉(zhuǎn)180°后可拼合(無(wú)重疊無(wú)縫隙)成平行四邊形紙片BCFD.
操作2:如圖2,一平行四邊形紙片ABCD,E、F、G、H分別是AB、BC、CD、AD邊的中點(diǎn),沿EF剪開(kāi)并將其中的△BFE紙片繞點(diǎn)E旋轉(zhuǎn)180°到△AF1E位置;沿HG剪開(kāi)并將其中的△DGH紙片繞點(diǎn)H旋轉(zhuǎn)180°到△AG1H位置;沿FG剪開(kāi)并將△CFG紙片放置于△AF1G1的位置,此時(shí)四張紙片恰好拼合(無(wú)重疊無(wú)縫隙)成四邊形FF1G1G.則四邊形FF1G1G的形狀是
 

精英家教網(wǎng)
操作、思考并探究:
(1)如圖3,如果四邊形ABCD是任意四邊形(不是梯形或平行四邊形)的紙片,E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).依次沿EF、FG、GH、HE剪開(kāi)得到四邊形紙片EFGH.請(qǐng)判斷四邊形紙片EFGH的形狀,并說(shuō)明理由.
(2)你能將上述四邊形紙片ABCD經(jīng)過(guò)恰當(dāng)?shù)丶羟泻笃春希o(wú)重疊無(wú)縫隙)成一個(gè)平行四邊形紙片?請(qǐng)?jiān)趫D4上畫(huà)出對(duì)應(yīng)的示意圖.
精英家教網(wǎng)
(3)如圖5,E、F、G、H分別是四邊形ABCD各邊的中點(diǎn),若△AEH、△BEF、△CFG、△DGH的面積分別為S1、S2、S3、S4,且S1=2,S3=5,則四邊形ABCD是面積是
 
.(不要求說(shuō)明理由)
分析:操作2:根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形進(jìn)行分析判斷;
(1)根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形進(jìn)行分析判斷;
(2)依照操作2進(jìn)行畫(huà)圖;
(3)根據(jù)三角形的中位線定理和相似三角形的性質(zhì)求解.
解答:精英家教網(wǎng)
解:操作2:連接BD.
根據(jù)三角形的中位線定理,得
EH∥BD,EH=
1
2
BD,F(xiàn)G∥BD,F(xiàn)G=
1
2
BD,
根據(jù)旋轉(zhuǎn)的性質(zhì),得F1G1∥EH,F(xiàn)1G1=EH.
所以F1G1∥FG,F(xiàn)1G1=FG,
所以四邊形FF1G1G的形狀是平行四邊形.
精英家教網(wǎng)
(1)連接BD.
根據(jù)三角形的中位線定理,得
EH∥BD,EH=
1
2
BD,F(xiàn)G∥BD,F(xiàn)G=
1
2
BD,
則EH∥FG,EH=FG,
則四邊形紙片EFGH的形狀是平行四邊形.
(2)見(jiàn)上述操作2;
(3)28.
點(diǎn)評(píng):此題綜合考查了三角形的中位線定理、旋轉(zhuǎn)的性質(zhì)以及相似三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、現(xiàn)有一張長(zhǎng)和寬之比為2:1的長(zhǎng)方形紙片,將它折兩次(第一次折后也可打開(kāi)鋪平再者第二次),使得折痕將紙片分為面積相等且不重疊的四個(gè)部分(稱為一次操作),如圖甲(虛線表示折痕).除圖甲外,請(qǐng)你再給出三種不同的操作,分別將折痕畫(huà)在圖①至圖③中(規(guī)定:一個(gè)操作得到的四個(gè)圖形,和另一個(gè)操作得到的四個(gè)圖形,如果能夠“配對(duì)”得到四組全等的圖形,那么就認(rèn)為是相同的操作,如圖乙和圖甲示相同的操作).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、小麗剪了一些直角三角形紙片,她取出其中的幾張進(jìn)行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長(zhǎng).
(2)如果∠CAD:∠BAD=4:7,求∠B的度數(shù).
操作二:如圖2,小麗拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,已知兩直角邊AC=4cm,BC=8cm,你能求出CD的長(zhǎng)嗎?
操作三:如圖3,小麗又拿出另一張Rt△ABC紙片,將紙片折疊,折痕CD⊥AB.你能證明:BC2+AD2=AC2+BD2嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,將一張正方形紙片剪成四個(gè)小正方形,得到4個(gè)小正方形,稱為第一次操作;然后,將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到7個(gè)小正方形,稱為第二次操作;再將其中的一個(gè)正方形再剪成四個(gè)小正方形,共得到10個(gè)小正方形,稱為第三次操作;…,根據(jù)以上操作,若要得到2011個(gè)小正方形,則需要操作的次數(shù)是
670

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•沙坪壩區(qū)模擬)如圖,將一張正三角形紙片剪成四個(gè)小正三角形,得到4個(gè)小正三角形,稱為第一次操作;然后,將其中的一個(gè)正三角形再剪成四個(gè)小正三角形,共得到7個(gè)小正三角形,稱為第二次操作;再將其中的一個(gè)正三角形再剪成四個(gè)小正三角形,共得到10個(gè)小正三角形,稱為第三次操作;…,根據(jù)以上操作,若要得到2011個(gè)小正三角形,則需要操作的次數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•吳中區(qū)二模)如圖,將一張正三角形紙片剪成四個(gè)小正三角形,得到4個(gè)小正三角形,稱為第一次操作;然后,將其中的一個(gè)正三角形再剪成四個(gè)小正三角形,共得到7個(gè)小正三角形,稱為第二次操作;再將其中的一個(gè)正三角形再剪成四個(gè)小正三角形,共得到10個(gè)小正三角形,稱為第三次操作;…,根據(jù)以上操作,若要得到2014個(gè)小正三角形,則需要操作的次數(shù)是(  )次.

查看答案和解析>>

同步練習(xí)冊(cè)答案