已知,如圖,圓內(nèi)接四邊形ABCD中,數(shù)學(xué)公式的度數(shù)為140°,則∠BOD=________度,∠BAD=________度.

140    110
分析:本題考查圓周角定理及圓內(nèi)接四邊形的性質(zhì)的運用.
解答:∵圓內(nèi)接四邊形ABCD中,的度數(shù)為140°,
∴∠BOD=140°,∠BCD=∠BOD=×140°=70°,
∴∠BAD=180°-∠BCD=180°-70°=110°,
∴∠BOD=140°,∠BAD=110°.
點評:本題考查的是圓周角定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們學(xué)過圓內(nèi)接三角形,同樣,四個頂點在圓上的四邊形是圓內(nèi)接四邊形,下面我們來研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有∠B=
1
2
∠1
∠D=
1
2
∠2
.∵∠1+∠2=360°∴∠B+∠D=
1
2
×360°=180°
,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對角(相對的兩個角)互補.
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個外角,請你探究外角∠DCE與它的相鄰內(nèi)角的對角(簡稱內(nèi)對角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長線上的點,如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們學(xué)過圓內(nèi)接三角形,同樣,四個頂點在圓上的四邊形是圓內(nèi)接四邊形,下面我們來研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有數(shù)學(xué)公式,數(shù)學(xué)公式.∵∠1+∠2=360°∴數(shù)學(xué)公式,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對角(相對的兩個角)互補.
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個外角,請你探究外角∠DCE與它的相鄰內(nèi)角的對角(簡稱內(nèi)對角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長線上的點,如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

同步練習(xí)冊答案