【題目】如圖,正方形ABCD內(nèi)接于⊙O,P為上一點(diǎn),連接PD、PC.
(1)∠CPD=______°.
(2)若DC=4,CP=2,求DP的長(zhǎng).
【答案】(1)45;(2)DP= 2+.
【解析】
(1)連接BD,根據(jù)正方形ABCD內(nèi)接于⊙O,可得∠CPD=∠DBC=45°;
(2)作CH⊥DP于H,因?yàn)?/span>CP=2,∠CPD=45°,可得CH=PH=2,因?yàn)?/span>DC=4,所以DH=,即DP=PH+DH=2+.
(1)如圖,連接BD,
∵正方形ABCD內(nèi)接于⊙O,P為上一點(diǎn),
∴∠DBC=45°,
∵∠CPD=∠DBC,
∴∠CPD=45°,
故答案為:45°;
(2)如圖,作CH⊥DP于H,
∵CP=2,∠CPD=45°,
∴CH=PH=2,
∵DC=4,
∴DH=,
∴DP=PH+DH=2+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接等邊三角形,BC=12,點(diǎn)D為上一動(dòng)點(diǎn),BE⊥OD于E,當(dāng)點(diǎn)D由點(diǎn)B沿運(yùn)動(dòng)到點(diǎn)C時(shí),線段AE的最大值是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角度小于180°),得到△ADE,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)如圖1,連接BE,若∠DAB+∠ACB=180°,請(qǐng)判斷四邊形AEBC的形狀,并說明理由;
(2)如圖2,設(shè)BE的延長(zhǎng)線與AD交于點(diǎn)F,若AF=FD,求∠BAD的度數(shù);
(3)如圖3,連接CD,若∠CAE=∠ACB,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)畫出△ABC關(guān)于點(diǎn)B成中心對(duì)稱的圖形△A1BC1;
(2)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx的圖象如圖所示,若關(guān)于x的一元二次方程ax2+bx+k-1=0沒有實(shí)數(shù)根,則k的取值范圍為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)域?yàn)轫憫?yīng)“綠水青山就是金山銀山”的號(hào)召,加強(qiáng)了綠化建設(shè).為了解該區(qū)域群眾對(duì)綠化建設(shè)的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在該區(qū)域的甲、乙兩個(gè)片區(qū)進(jìn)行了調(diào)查,得到如下不完整統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中信息,解決下列問題:
(1)此次調(diào)查中接受調(diào)查的人數(shù)為多少人,其中“非常滿意”的人數(shù)為多少人;
(2)興趣小組準(zhǔn)備從“不滿意”的4位群眾中隨機(jī)選擇2位進(jìn)行回訪,已知這4位群眾中有2位來自甲片區(qū),另2位來自乙片區(qū),請(qǐng)用畫樹狀圖或列表的方法求出選擇的群眾來自甲片區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠A=45°,∠B=120°,AB=5,BC=10,則CD的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的分式方程的解為正數(shù),使關(guān)于y的不等式組無解,則所有滿足條件的整數(shù)a的值之積是( 。
A. 360 B. 90 C. 60 D. 15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)(2)班在測(cè)量校內(nèi)旗桿高度的數(shù)學(xué)活動(dòng)中,第一組的同學(xué)設(shè)計(jì)了兩種測(cè)量方案,并根據(jù)測(cè)量結(jié)果填寫了如下《數(shù)學(xué)活動(dòng)報(bào)告》中的一部分.
課題 | 測(cè)量校內(nèi)旗桿高度 | ||
目的 | 運(yùn)用所學(xué)數(shù)學(xué)知識(shí)及數(shù)學(xué)方法解決實(shí)際問題﹣﹣﹣測(cè)量旗桿高度 | ||
方案 | 方案一 | 方案二 | 方案三 |
示意圖 | |||
測(cè)量工具 | 皮尺、測(cè)角儀 | 皮尺、測(cè)角儀 | |
測(cè)量數(shù)據(jù) | AM=1.5m,AB=10m ∠α=30°,∠β=60° | AM=1.5m,AB=20m ∠α=30°,∠β=60° | |
計(jì)算過程(結(jié) 果保留根號(hào)) | 解: | 解: |
(1)請(qǐng)你在方案一二中任選一種方案(多選不加分),根據(jù)方案提供的示意圖及相關(guān)數(shù)據(jù)填寫表中的計(jì)算過程、測(cè)量結(jié)果;
(2)請(qǐng)你根據(jù)所學(xué)的知識(shí),再設(shè)計(jì)一種不同于方案一、二的測(cè)量方案三,并完成表格中方案三的所有欄目的填寫.(要求:在示意圖中標(biāo)出所需的測(cè)量數(shù)據(jù)長(zhǎng)度用字母a,b,c…表示,角度用字母α,β,γ…表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com