【題目】如圖,將一塊三角板ABC的直角頂點(diǎn)C放在直尺的一邊PQ上,直尺的另一邊MN與三角板的兩邊AC、BC分別交于兩點(diǎn)E、D,且AD為∠BAC的平分線,∠B=300 , ∠ADE=150.

(1)求∠BDN的度數(shù);
(2)求證:CD=CE.

【答案】
(1)解:在直角三角形ABC中,∠ACB=900 , ∠B=300,
∴∠BAC=600,又AD平分∠BAC,
∴∠CAD=300,又∠ACD=900,
∴∠CDA=600
又∠ADE=150 ,
∴∠CDE=∠CDA-∠ADE=600-150=450
∴∠BDN=∠CDE=450
(2)解:在△CED中,∠ECD=900 , ∠CDE=450
∴∠CED=450
∴ CD=CE
【解析】(1)∠BDN可轉(zhuǎn)化為∠CDE,∠CDE再轉(zhuǎn)化為∠CDA-∠ADE=600-150=450;(2)利用(1)的結(jié)論,∠CDE=450 , ∠ECD=900,可得出,CED=450
進(jìn)而證得CD=CE.

【考點(diǎn)精析】本題主要考查了三角形的內(nèi)角和外角和等腰三角形的判定的相關(guān)知識(shí)點(diǎn),需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,以CD為邊作等邊三角形CDE,BE與AC相交于點(diǎn)M,則∠AMD的度數(shù)是( 。
A.75°
B.60°
C.54°
D.67.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CA=CBACB=90°,以AB的中點(diǎn)D為圓心,作圓心角為90°的扇形DEF,點(diǎn)C恰在EF上,設(shè)∠BDF=α(0°<α<90°),當(dāng)α由小到大變化時(shí),圖中陰影部分的面積( 。

A. 由小到大 B. 由大到小 C. 不變 D. 先由小到大,后由大到小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求證:AE=DF;
(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中:①有公共頂點(diǎn)且相等的角是對(duì)頂角;②直線外一點(diǎn)到這條直線的垂線段,叫做點(diǎn)到直線的距離;③互為鄰補(bǔ)角的兩個(gè)角的平分線互相垂直;④經(jīng)過一點(diǎn)有且只有一條直線與已知直線平行.其中真命題的個(gè)數(shù)有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:﹣1﹣(﹣1)0的結(jié)果正確是(
A.0
B.1
C.2
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)Dx軸正半軸上,線段OD=OC.

(1)求拋物線的解析式;

(2)拋物線上是否存在點(diǎn)M,使得⊿CDM是以CD為直角邊的直角三角形?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,,連接QE.若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問:在P點(diǎn)和F點(diǎn)的移動(dòng)過程中,△PCF的周長是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x+y2=49,xy=12,則x2+y2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A、∠B滿足,求

(1)∠C的大;

(2)若AC=12,求BC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案