(2010•下城區(qū)模擬)如圖,△ABC中,∠B=∠C=30°,點(diǎn)D是BC邊上一點(diǎn),以AD為直徑的⊙O恰與BC邊相切,⊙O交AB于E,交AC于F.過(guò)O點(diǎn)的直線MN分別交線段BE和CF于M,N,若AM:MB=3:5,則FC:AF的值為( )

A.3:1
B.5:3
C.2:1
D.5:2
【答案】分析:根據(jù)題意,利用特殊角度建立AF與半徑、AC與半徑之間的關(guān)系,從而求解.
解答:解:∵∠B=∠C=30°,⊙O恰與BC邊相切,AD⊥BC,
∴AB=AC=2AD=2×2r=4r;
連接OE,則OE=OA,
又∵∠BAD=(180°-30°-30°)÷2=60°,
∴OA=AE=OE=r,
同理,AF=r.
則FC=AC-AF=4r-r=3r.
∴FC:AF=3r:r=3.
故選A.
點(diǎn)評(píng):根據(jù)切線性質(zhì),判斷出AD⊥BC,根據(jù)∠B=∠C=30°,判斷出AB=AC,靈活運(yùn)用等腰三角形的性質(zhì)和勾股定理解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省溫州地區(qū)九年級(jí)五校仿真聯(lián)考試卷(解析版) 題型:解答題

(2010•下城區(qū)模擬)矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點(diǎn)D.
(1)若拋物線y=ax2+bx(a≠0)經(jīng)過(guò)D、A兩點(diǎn),試確定此拋物線的表達(dá)式;
(2)若以點(diǎn)A為圓心的⊙A與直線OD相切,試求⊙A的半徑;
(3)設(shè)(1)中拋物線的對(duì)稱軸與直線OD交于點(diǎn)M,在對(duì)稱軸上是否存在點(diǎn)Q,以Q、O、M為頂點(diǎn)的三角形與△OCD相似?若存在,試求出符合條件的Q點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•下城區(qū)模擬)矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點(diǎn)D.
(1)若拋物線y=ax2+bx(a≠0)經(jīng)過(guò)D、A兩點(diǎn),試確定此拋物線的表達(dá)式;
(2)若以點(diǎn)A為圓心的⊙A與直線OD相切,試求⊙A的半徑;
(3)設(shè)(1)中拋物線的對(duì)稱軸與直線OD交于點(diǎn)M,在對(duì)稱軸上是否存在點(diǎn)Q,以Q、O、M為頂點(diǎn)的三角形與△OCD相似?若存在,試求出符合條件的Q點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市西湖區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•下城區(qū)模擬)矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點(diǎn)D.
(1)若拋物線y=ax2+bx(a≠0)經(jīng)過(guò)D、A兩點(diǎn),試確定此拋物線的表達(dá)式;
(2)若以點(diǎn)A為圓心的⊙A與直線OD相切,試求⊙A的半徑;
(3)設(shè)(1)中拋物線的對(duì)稱軸與直線OD交于點(diǎn)M,在對(duì)稱軸上是否存在點(diǎn)Q,以Q、O、M為頂點(diǎn)的三角形與△OCD相似?若存在,試求出符合條件的Q點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2010•下城區(qū)模擬)如圖,矩形的長(zhǎng)與寬分別為a和b,在矩形中截取兩個(gè)大小相同的圓作為圓柱的上下底面,剩余的矩形作為圓柱的側(cè)面,剛好能組合成一個(gè)沒(méi)有空隙的圓柱,則a和b要滿足什么數(shù)量關(guān)系( )

A.=
B.=
C.=
D.=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市西湖區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2010•下城區(qū)模擬)側(cè)棱長(zhǎng)為15cm的直三棱柱的三個(gè)側(cè)面面積分別為cm2、cm2cm2,則該棱柱上底面的面積為    cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案