若將函數(shù)y=2x2的圖象向左平移1個單位,再向上平移2個單位,可得到的拋物線是               .
y=2(x+1)2+2.

試題分析:∵函數(shù)y=2x2的圖象向左平移1個單位,再向上平移2個單位,
∴平移后拋物線頂點坐標為(-1,2).
∴得到的拋物線是y=2(x+1)2+2.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

.如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O(shè)為坐標原點建立如圖所示的平面直角坐標系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是
A.13B.14C.15D.16

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應值如下表:
x

-1
0
  1
2
3
4

y

8
3
0
-1
0
3

(1)求該二次函數(shù)的解析式;
(2)當x為何值時,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)兩點都在該函數(shù)的圖象上,計算當m 取何值時,

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線的圖象向右移動3個單位,再向下移動4個單位,解析式是                  ;它的頂點坐標是            .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點A、B,與y軸的正半軸交于點C,點A的坐標為(1,0),OB=OC.

(1)求此拋物線的解析式;
(2)若點P是線段BC上的一個動點,過點P作y軸的平行線與拋物線在x軸下方交于點Q,試問線段PQ的長度是否存在最大值?若存在,求出其最大值;若不存在,請說明理由;
(3)若此拋物線的對稱軸上的點M滿足∠AMC=45°,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某批發(fā)商以每件50元的價格購進400件T恤.若以單價70元銷售,預計可售出200件.批發(fā)商的銷售策略是:第一個月為增加銷售量,降價銷售,經(jīng)過市場調(diào)查,單價每降低0.5元,可多售出5件,但最低單價不低于購進的價格;第一個月結(jié)束后,將剩余的T恤一次性清倉銷售,清倉時單價為40元.設(shè)第一個月單價降低x元.
(1)根據(jù)題意,完成下表:
 
每件T恤的利潤(元)
銷售量(件)
第一個月
 
 
清倉時
 
 
(2)T恤的銷售單價定為多少元時,該批發(fā)商可獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若花園的BC邊長為x米,花園的面積為y(m2

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達到200m2嗎?若能,求出此時x的值;若不能,說明理由;
(3)請結(jié)合題意,判斷當x取何值時,花園的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線的頂點坐標是              

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB為半圓的直徑,點P為AB上一動點.動點P從點A 出發(fā),沿AB勻速運動到點B,運動時間為t.分別以AP與PB為直徑作半圓,則圖中陰影部分的面積S與時間t之間的函數(shù)圖象大致為(   )


A.                  B.                C.             D.

查看答案和解析>>

同步練習冊答案