【題目】為響應(yīng)荊州市“創(chuàng)建全國(guó)文明城市”號(hào)召,某單位不斷美化環(huán)境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長(zhǎng)不超過(guò)18m,另外三邊由36m長(zhǎng)的柵欄圍成.設(shè)矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)若矩形空地的面積為160m2,求x的值;
(3)若該單位用8600元購(gòu)買(mǎi)了甲、乙、丙三種綠色植物共400棵(每種植物的單價(jià)和每棵栽種的合理用地面積如下表).問(wèn)丙種植物最多可以購(gòu)買(mǎi)多少棵?此時(shí),這批植物可以全部栽種到這塊空地上嗎?請(qǐng)說(shuō)明理由.
甲 | 乙 | 丙 | |
單價(jià)(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |
【答案】(1)y=﹣2x2+36x(0<x<18);(2)x的值為10;(3)這批植物不可以全部栽種到這塊空地上.
【解析】
(1)根據(jù)矩形的面積公式計(jì)算即可;
(2)構(gòu)建方程即可解決問(wèn)題,注意檢驗(yàn)是否符合題意;
(3)利用二次函數(shù)的性質(zhì)求出y的最大值,設(shè)購(gòu)買(mǎi)了乙種綠色植物a棵,購(gòu)買(mǎi)了丙種綠色植物b棵,由題意:14(400﹣a﹣b)+16a+28b=8600,可得a+7b=1500,推出b的最大值為214,此時(shí)a=2,再求出實(shí)際植物面積即可判斷.
(1)y=x(36﹣2x)=﹣2x2+36x(0<x<18);
(2)由題意:﹣2x2+36x=160,
解得x=10或8,
∵x=8時(shí),36﹣16=20<18,不符合題意,
∴x的值為10;
(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,
∴x=9時(shí),y有最大值162,
設(shè)購(gòu)買(mǎi)了乙種綠色植物a棵,購(gòu)買(mǎi)了丙種綠色植物b棵,
由題意:14(400﹣a﹣b)+16a+28b=8600,
∴a+7b=1500,
∴b的最大值為214,此時(shí)a=2,
需要種植的面積=0.4×(400﹣214﹣2)+1×2+0.4×214=162.8>162,
∴這批植物不可以全部栽種到這塊空地上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓O的直徑,在中,,,,半圓O以的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E始終在直線BC上,設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)時(shí),半圓O在的左側(cè),.
如圖1當(dāng)時(shí),圓心O到AB所在直線的距離是______cm.
當(dāng)t為何值時(shí),的邊AB所在的直線與半圓O所在圓相切?求時(shí)間t.
如圖2,線段AB的中點(diǎn)為F,求圓心O與B、F兩點(diǎn)構(gòu)成以BF為腰的等腰三角形時(shí)運(yùn)動(dòng)的時(shí)間t.
在圖2的基礎(chǔ)上,建立如圖所示的平面直角坐標(biāo)系,四邊形ACBG是矩形,如圖3,半圓O向右運(yùn)動(dòng)的同時(shí)矩形也向右運(yùn)動(dòng),速度為,問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間O、F、G在同一條直線上,求時(shí)間并求出此時(shí)DG的直線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知,,點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)E、F分別是CA,CB邊的中點(diǎn),過(guò)點(diǎn)P作于D,設(shè),圖中某條線段的長(zhǎng)為y,如果表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,那么這條線段可能是
A. PDB. PEC. PCD. PF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,作OF∥AB交BC于點(diǎn)F,連接EF.
(1)求證:OF⊥CE;
(2)求證:EF是⊙O的切線;
(3)若⊙O的半徑為3,∠EAC=60°,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫(huà)有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對(duì)稱圖形的概率;
(2)小明和小亮約定做一個(gè)游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對(duì)稱圖形小明獲勝,否則小亮獲勝,這個(gè)游戲公平嗎?請(qǐng)用列表法(或樹(shù)狀圖)說(shuō)明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解決問(wèn)題:
如圖,半徑為4的外有一點(diǎn)P,且,點(diǎn)A在上,則PA的最大值和最小值分別是______和______.
如圖,扇形AOB的半徑為4,,P為弧AB上一點(diǎn),分別在OA邊找點(diǎn)E,在OB邊上找一點(diǎn)F,使得周長(zhǎng)的最小,請(qǐng)?jiān)趫D中確定點(diǎn)E、F的位置并直接寫(xiě)出周長(zhǎng)的最小值;
拓展應(yīng)用
如圖,正方形ABCD的邊長(zhǎng)為;E是CD上一點(diǎn)不與D、C重合,于F,P在BE上,且,M、N分別是AB、AC上動(dòng)點(diǎn),求周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D為BC上一點(diǎn),連接AD,過(guò)點(diǎn)B作BE垂直于CA的延長(zhǎng)線于點(diǎn)E,BE與DA的延長(zhǎng)線相交于點(diǎn)F.
(1)如圖1,若AB平分∠CBE,∠ADB=30°,AE=3,AC=7,求CD的長(zhǎng);
(2)如圖2,若AB=AC,∠ADB=45°,求證;BC=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某一天,水果經(jīng)營(yíng)戶老張用1600元從水果批發(fā)市場(chǎng)批發(fā)獼猴桃和芒果共50千克,后再到水果市場(chǎng)去賣(mài),已知獼猴桃和芒果當(dāng)天的批發(fā)價(jià)和零售價(jià)如表所示:
品名 | 獼猴桃 | 芒果 |
批發(fā)價(jià)元千克 | 20 | 40 |
零售價(jià)元千克 | 26 | 50 |
他購(gòu)進(jìn)的獼猴桃和芒果各多少千克?
如果獼猴桃和芒果全部賣(mài)完,他能賺多少錢(qián)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com