如圖,已知在△ABC中,點D、E、F分別是邊AB、AC、BC上的點,DE∥BC,EF∥AB,且AD∶DB = 3∶5,那么CF∶CB等于

(A) 5∶8     (B)3∶8      (C) 3∶5    (D)2∶5
A

試題分析:∵DE∥BC,AD∶DB = 3∶5,∴AE∶EC = AD∶DB = 3∶5。
∴AC∶EC = 8∶5,即CE∶CA= 5∶8。
又∵EF∥AB,∴CF∶CB= CE∶CA= 5∶8。
故選A。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),∆ABC為等邊三角形,AB=6,在直角三角板DEF中∠F=90°,∠FDE=60°,點D在邊BC上運動,邊DF始終經過點A,DE交AC于點G.

(1)求證:①∠BAD=∠CDG
②∆ABD∽∆DCG
(2)設BD=x,若CG=,求x的值;
(3)如圖2,當D運動到BC中點時,點P為線段AD上一動點,連接CP,將線段CP繞著點C逆時針旋轉60°得到CP' ,連接BP',DP',

①求∠CBP'的度數(shù);②求DP'的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知△ABC∽△DEF,且AB:DE=1:2,則△ABC的周長與△DEF的周長之比為 (   )
A.2:1B.1:2C.1:4D.4:1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠A=36°,AB=AC,AB的垂直平分線OD交AB于點O,交AC于點D,連接BD,下列結論錯誤的是
A.∠C=2∠AB.BD平分∠ABC
C.SBCD=SBODD.點D為線段AC的黃金分割點

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點G、E、A、B在一條直線上,Rt△EFG從如圖所示是位置出發(fā),沿直線AB向右勻速運動,當點G與B重合時停止運動.設△EFG與矩形ABCD重合部分的面積為S,運動時間為t,則S與t的圖象大致是

A.       B.      C.      D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一天晚上,李明和張龍利用燈光下的影子來測量一路燈D的高度,如圖,當李明走到點A處時,張龍測得李明直立身高AM與其影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m。已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在?ABCD中,E是AD邊上的中點,連接BE,并延長BE交CD延長線于點F,則△EDF與△BCF的周長之比是【   】
A.1:2B.1:3C.1:4D.1:5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為了測量旗桿AB的高度.甲同學畫出了示意圖1,并把測量結果記錄如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同學畫出了示意圖2,并把測量結果記錄如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.

(1)請你幫助甲同學計算旗桿AB的高度(用含a、b、c的式子表示);
(2)請你幫助乙同學計算旗桿AB的高度(用含m、n、α的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,正方形ABCD的邊長為2,點E、F分別為邊AB、AD 的中點,點G是CF上的一點,使得3 CG =2 GF,則三角形BEG的面積為       .

查看答案和解析>>

同步練習冊答案