【題目】【問(wèn)題背景】
已知:l1∥l2∥l3∥l4,平行線l1與l2、l2與l3、l3與l4之間的距離分別為d1、d2、d3,且d1=d3=1,d2=2,我們把四個(gè)頂點(diǎn)分別在l1、l2、l3、l4這四條平行線上的四邊形稱(chēng)為“格線四邊形”.
【問(wèn)題探究】
(1)如圖1,正方形ABCD為“格線四邊形”,則正方形ABCD的邊長(zhǎng)為 .
(2)矩形ABCD為“格線四邊形”,其長(zhǎng):寬=2:1,求矩形ABCD的寬.
【問(wèn)題拓展】
(3)如圖1,EG過(guò)正方形ABCD的頂點(diǎn)D且垂直l1于點(diǎn)E,分別交l2,l4于點(diǎn)F,G,將∠AEG繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°,得到∠AE′D′(如圖2),點(diǎn)D′在直線l3上,以AD′為邊在E′D′左側(cè)作菱形AB′C′D′,使B′C′,分別在直線l2,l4上,求菱形AB′C′D′的邊長(zhǎng).
【答案】(1);(2),;(3)
【解析】
試題分析:(1)利用已知得出△AED≌△DGC(AAS),即可得出AE,以及正方形的邊長(zhǎng);
(2)如圖2過(guò)點(diǎn)B作BE⊥L1于點(diǎn)E,反向延長(zhǎng)BE交L4于點(diǎn)F,則BE=1,BF=3,由四邊形ABCD是矩形,∠ABC=90°,∠ABE+∠FBC=90°,根據(jù)∠ABE+∠EAB=90°,得到∠FBC=∠EAB,然后分類(lèi)討論,求得矩形的寬.
(3)首先過(guò)點(diǎn)E′作ON垂直于l1分別交l1,l2于點(diǎn)O,N,∠AEO=30°,則∠ED′N(xiāo)=60°,可求出AE=1,EO,EN,ED′的長(zhǎng),進(jìn)而由勾股定理可知菱形的邊長(zhǎng).
解:(1)∵l1∥l2∥l3∥l4,∠AED=90°∴∠DGC=90°,
∵四邊形ABCD為正方形,
∴∠ADC=90°,AD=CD,
∵∠ADE+∠2=90°,
∴∠1+∠2=90°,
∴∠1=∠ADE,
∵l3∥l4
∴∠1=∠DCG,
∠ADE=∠DCG,
在△AED與△DGC中,
,
∴△AED≌△GDC(AAS),
∴AE=GD=1,ED=GC=3,
∴AD==,
故答案為:;
(2)如圖2過(guò)點(diǎn)B作BE⊥L1于點(diǎn)E,反向延長(zhǎng)BE交L4于點(diǎn)F,
則BE=1,BF=3,
∵四邊形ABCD是矩形,
∴∠ABC=90°,
∴∠ABE+∠FBC=90°,
∵∠ABE+∠EAB=90°,
∴∠FBC=∠EAB,
當(dāng)AB<BC時(shí),AB=BC,
∴AE=BF=,
∴AB==;
如圖3當(dāng)AB>BC時(shí),
同理可得:BC=,
∴矩形的寬為:,;
(3)如圖4過(guò)點(diǎn)E′作ON垂直于l1分別交l1,l4于點(diǎn)O,N,
∵∠OAE′=30°,則∠E′FN=60°
∵AE′=AE=1,
故E′O=,E′N(xiāo)=,E′D′=,
由勾股定理可知菱形的邊長(zhǎng)為:==,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課本1.4有這樣一道例題:
問(wèn)題4:用一根長(zhǎng)22cm的鐵絲:
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32cm2的矩形?
據(jù)此,一位同學(xué)提出問(wèn)題:“用這根長(zhǎng)22cm的鐵絲能否圍成面積最大的矩形?若能?chē),求出面積最大值;若不能?chē),?qǐng)說(shuō)明理由.”請(qǐng)你完成該同學(xué)提出的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】森林是地球之肺,每年能為人類(lèi)提供大約28.3億噸的有機(jī)物.28.3億噸用科學(xué)記數(shù)法表示為( )
A.28.3×107 B.2.83×108
C.0.283×1010 D.2.83×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A.4a﹣3a=1 B.a(chǎn)a2=a3
C.3a6÷a3=3a2 D.(ab2)2=a2b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在通常的日歷牌上,可以看到一些數(shù)所滿足的規(guī)律,表①是2015年9月份的日歷牌.
(1)在表①中,我們選擇用如表②那樣2×2的正方形框任意圈出2×2個(gè)數(shù),將它們線交叉相乘,再相減,如:用正方形框圈出4、5、11、12四個(gè)數(shù),然后將它們交叉相乘,再相減,即4×12﹣5×11=﹣7或5×11﹣4×12=7,請(qǐng)你用表②的正方形框任意圈出2×2個(gè)數(shù),將它們先交叉相乘,再相減.列出算式并算出結(jié)果(選擇其中一個(gè)算式即可);
(2)在用表②的正方形框任意圈出2×2個(gè)數(shù)中,將它們先交叉相乘,再相減,若設(shè)左上角的數(shù)字為n,用含n的式子表示其他三個(gè)位置的數(shù)字,列出算式并算出結(jié)果(選擇其中一個(gè)算式即可);
(3)若選擇用如表③那樣3×3的正方形方框任意圈出3×3個(gè)數(shù),將正方形方框四個(gè)角位置上的4個(gè)數(shù)先交叉相乘,再相減,你發(fā)現(xiàn)了什么?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AD=5,AB=4,點(diǎn)E,F(xiàn)在直線AD上,且四邊形BCFE為菱形.若線段EF的中點(diǎn)為點(diǎn)M,則線段AM的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下列各組數(shù)為三邊的三角形中不是直角三角形的是
A. 9、12、15 B. 41、40、9 C. 25、7、24 D. 6、5、4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知1cm3的氫氣重約為0.00009g,用科學(xué)記數(shù)法表示1cm3的氫氣質(zhì)量____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綠苑小區(qū)在規(guī)劃設(shè)計(jì)時(shí),準(zhǔn)備在兩幢樓房之間,設(shè)置一塊面積為900平方米的矩形綠地,并且長(zhǎng)比寬多10米.設(shè)綠地的寬為x米,根據(jù)題意,可列方程為( )
A.x(x﹣10)=900
B.x(x+10)=900
C.10(x+10)=900
D.2[x+(x+10)]=900
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com