已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

 

【答案】

解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,

 ∴在實數(shù)范圍內(nèi),m無論取何值,(m-2)2+4≥4>0,即△>0。

∴關(guān)于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根。

(2)∵此方程的一個根是1,

∴12-1×(m+2)+(2m-1)=0,解得,m=2,

則方程的另一根為:m+2-1=2+1=3。

①當該直角三角形的兩直角邊是1、3時,由勾股定理得斜邊的長度為,該直角三角形的周長為1+3+=4+。

②當該直角三角形的直角邊和斜邊分別是1、3時,由勾股定理得該直角三角形的另一直角邊為;則該直角三角形的周長為1+3+=4+

【解析】(1)根據(jù)關(guān)于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結(jié)論。

(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關(guān)系求得方程的另一根。分類討論:①當該直角三角形的兩直角邊是2、3時,②當該直角三角形的直角邊和斜邊分別是2、3時,由勾股定理求出得該直角三角形的另一邊,再根據(jù)三角形的周長公式進行計算。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、已知關(guān)于x的方程x2+kx+1=0和x2-x-k=0有一個根相同,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•綿陽)已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•西城區(qū)二模)已知關(guān)于x的方程x2+3x=8-m有兩個不相等的實數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2=0有兩個實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關(guān)于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實數(shù)值,方程總有實數(shù)根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個方程的兩個根,求此三角形的周長.

查看答案和解析>>

同步練習冊答案