【題目】甲、乙兩個工程隊共同承擔(dān)一項筑路任務(wù),甲隊單獨施工完成此項任務(wù)比乙隊單獨施工完成此項任務(wù)多用天,且甲隊單獨施工天和乙隊單獨施工天的工作量相同.
甲、乙兩隊單獨完成此項任務(wù)各需多少天?
設(shè)先由甲隊施工天,再由乙隊施工天,剛好完成筑路任務(wù),求與之間的函數(shù)關(guān)系式.
在的條件下,若每天需付給甲隊的筑路費用為萬元,需付給乙隊的筑路費用為萬元,且甲、乙兩隊施工的總天數(shù)不超過天,則如何安排甲、乙兩隊施工的天數(shù),使施工費用最少,并求出最少費用.
【答案】 甲隊天,乙隊天;;當(dāng)甲、乙兩隊都做天時,最少萬元.
【解析】
(1)設(shè)甲隊單獨完成此項任務(wù)需要天,則乙隊單獨完成此項任務(wù)需要天,根據(jù)甲隊單獨施工45天和乙隊單獨施工30天的工作量相同建立方程求出其解即可;
由甲乙完成的工作量之和為,列函數(shù)關(guān)系式,變形可得答案,
設(shè)甲隊安排天,利用總天數(shù)不超過天,列不等式求解的范圍,再列出總費用的的關(guān)系式,利用一次函數(shù)的性質(zhì)可得答案.
解:設(shè)甲隊單獨完成需要天,則乙隊單獨完成需要天,由題意得:
,
經(jīng)檢驗:是原方程的根,則
甲隊單獨完成需要天,則乙隊單獨完成需要天.
由題意得:
設(shè)甲隊安排天,則乙隊安排天,
解得:
又總費用
時,即甲乙都安排天,總費用最少,
此時,總費用萬元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某土產(chǎn)公司組織20輛汽車裝運甲、乙、丙三種土特產(chǎn)共120噸去外地銷售按計劃20輛車都要裝運,每輛汽車只能裝運同一種土特產(chǎn),且必須裝滿,根據(jù)下表提供的信息,解答以下問題
土特產(chǎn)種類 | 甲 | 乙 | 丙 |
每輛汽車運載量(噸) | 8 | 6 | 5 |
每噸土特產(chǎn)獲利(百元) | 12 | 16 | 10 |
(1)設(shè)裝運甲種土特產(chǎn)的車輛數(shù)為x,裝運乙種土特產(chǎn)的車輛數(shù)為y,求y與x之間的函數(shù)關(guān)系式;
(2)如果裝運每種土特產(chǎn)的車輛都不少于3輛,那么車輛的安排方案有幾種?并寫出每種安排方案;
(3)若要使此次銷售獲利最大,應(yīng)采用(2)中哪種安排方案?并求出最大利潤的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)在第三象限交于點.點的坐標(biāo)為(一3,0),點是軸左側(cè)的一點.若以為頂點的四邊形為平行四邊形.則點的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.某校學(xué)生會為了了解垃圾分類知識的普及情況,隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計圖.
(1)求:本次被調(diào)查的學(xué)生有多少名?補全條形統(tǒng)計圖.
(2)估計該校1200名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學(xué)生中有2名男生,其余為女生,從中隨機抽取2人在全校做垃圾分類知識交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BC=AC,∠ACB=90°,將△ABC繞著點C順時針旋轉(zhuǎn)α(0≤α≤90°),得到△EFC,EF與AB、AC相交于點D、H,FC與AB相交于點G、AC相交于點D、H,FC與AB相較于點G.
(1)求證:△GBC≌△HEC;
(2)在旋轉(zhuǎn)過程中,當(dāng)α是多少度時四邊形BCED可以是某種特殊的平行四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=6,BC=9, 將矩形紙片ABCD折疊,使C與點A重合,則折痕EF的長為__________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(3,3)、B(﹣1,0)、C(4,0).
(1)經(jīng)過平移,可使△ABC的頂點A與坐標(biāo)原點O重合,則點C的對應(yīng)點C1的坐標(biāo)為 ;(不用畫圖)
(2)在圖中畫出將△ABC繞點B逆時針旋轉(zhuǎn)90°得到的△A′BC′;
(3)以點A為位似中心放大△ABC,得到△AB2C2,使S△ABC:S=1:4,在圖中畫出△AB2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點B(6,0),與y軸交于點A,與二次函數(shù)y=ax2的圖象在第一象限內(nèi)交于點C(3,3).
(1)求此一次函數(shù)與二次函數(shù)的表達式;
(2)若點D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點E,∠ADO=∠OED,求點D坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com