【題目】如圖,某數(shù)學(xué)興趣小組為測量一棵古樹和教學(xué)樓的高,先在處用高1.5米的測角儀測得古樹頂端的仰角,此時教學(xué)樓頂端恰好在視線上,再向前走9米到達(dá)處,又測得教學(xué)樓頂端的仰角,點、、三點在同一水平線上.

1)計算古樹的高;

2)計算教學(xué)樓的高.(結(jié)果精確到0.1米,參考數(shù)據(jù):,,,.

【答案】110.5米;(216.5.

【解析】

1)利用等腰直角三角形的性質(zhì)即可解決問題;

2)在RtEFG中可求,在RtGDF中,可得GFDF,從而,解得:GF=15,故可得解.

1)由題意,四邊形ABED是矩形,可得DEAB9米,ADBE1.5米,

RtDEH中,∵∠EDH45°

HEDE9米.

BHEH+BE10.5米.

2)在RtEFG中,∵,∴,

RtGDF中,∵∠EDH45°,∴GFDF,

,解得:GF=15

由題意,四邊形ACFD是矩形,∴CFAD1.5米,

∴教學(xué)樓CG=GF+CF=16.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ly=x,過點A11,0)作A1B1x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3,按此作法進(jìn)行下去,則的長為______(用含n,π的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);

(3當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC2C,小明做了如下操作:

)以A為圓心,AB長為半徑畫弧,交AC于點F;

)以A為圓心,任意長為半徑畫弧,交AB、ACMN兩點,分別以M、N為圓心,以大于MN為半徑畫弧,兩弧交于一點P,作射線AP,交BC于點E;

)作直線EF.

依據(jù)小明尺規(guī)作圖的方法,若AB3.3,BE1.8,則AC的長為___________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=4BC=3,點DAC的中點,連接BD,按以下步驟作圖:①分別以BD為圓心,大于BD的長為半徑作弧,兩弧相交于點P和點Q;②作直線PQAB于點E,交BC于點F,則BF=( 。

A. B. 1C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書香校園活動中,某校為了解學(xué)生家庭藏書情況,隨機(jī)抽取本校部分學(xué)生進(jìn)行調(diào)查,并繪制成部分統(tǒng)計圖表如下:

類別

家庭藏書m

學(xué)生人數(shù)

A

0≤m≤25

20

B

26≤m≤100

a

C

101≤m≤200

50

D

m≥201

66

根據(jù)以上信息,解答下列問題:

(1)該調(diào)查的樣本容量為_____a_____;

(2)在扇形統(tǒng)計圖中,“A”對應(yīng)扇形的圓心角為_____°;

(3)若該校有2000名學(xué)生,請估計全校學(xué)生中家庭藏書200本以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論:①二次三項式ax2+bx+c的最大值為4;4a+2b+c<0;③一元二次方程ax2+bx+c=1的兩根之和為﹣2;④使y≤3成立的x的取值范圍是x≥0;⑤拋物線上有兩點P(x1,y1Q(x2,y2,若x1<﹣1<x2,且x1+x2>﹣2,則y1<y2其中正確的個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,AD=CD,E是對角線BD上一點,且EA=EC.

(1)求證:四邊形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=-x+4與雙曲線y=x0)只有一個交點,將直線y=-x+4向上平移1個單位后與雙曲線y=x0)相交于A,B兩點,如圖,求AB兩點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案