方程x2+2xy+3y2=34的整數(shù)解(x,y)的組數(shù)為( )
A.3
B.4
C.5
D.6
【答案】
分析:首先將原方程變形為:(x+y)
2+2y
2=34,即可得x+y必須是偶數(shù),然后設(shè)x+y=2t,可得新方程2t
2+y
2=17,解此方程即可求得答案.
解答:解:方程變形得:(x+y)
2+2y
2=34,
∵34與2y
2是偶數(shù),
∴x+y必須是偶數(shù),
設(shè)x+y=2t,
則原方程變?yōu)椋海?t)
2+2y
2=34,
∴2t
2+y
2=17,
它的整數(shù)解為
,
則當y=3,t=2時,x=1;
當y=3,t=-2時,x=-7;
當y=-3,t=2時,x=7;
當y=-3,t=-2時,x=-1.
∴原方程的整數(shù)解為:(1,3),(-7,3),(7,-3),(-1,-3)共4組.
故選B.
點評:此題考查了非一次不定方程的知識.此題難度較大,解題的關(guān)鍵是將原方程變形為:(x+y)
2+2y
2=34,由x+y必須是偶數(shù),然后設(shè)x+y=2t,從而得新方程2t
2+y
2=17.