【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是8m,寬是2m,拋物線的最高點到路面的距離為6米.

1)按如圖所示建立平面直角坐標系,求表示該拋物線的函數(shù)表達式;

2)一輛貨運卡車高為4m,寬為2m,如果該隧道內設雙向車道,那么這輛貨車能否安全通過?

【答案】(1)y=﹣(x﹣4)2+6;(2)這輛貨車能安全通過.

【解析】試題分析:(1)根據題意可知頂點坐標和點B坐標,設拋物線的函數(shù)表達式為頂點式,代入即可求出表達式;

2)利用寬2m求出高為5m,所以可以通過.

試題解析:解:(1)如圖1,由題意得:最高點C46),B8,2),設拋物線的函數(shù)表達式:y=ax42+6,把(82)代入得:a842+6=2,a=y=x42+6;

2)如圖2,當DE=2時,AD=AEDE=42=2,當x=2時,y=242+6=54,這輛貨車能安全通過.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,的平分線交于點,過點于點,交于點,那么下列結論:①;②;③都是等腰三角形;④的周長等于的和,其中正確的有(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD是正方形,MAB延長線上一點.直角三角尺的一條直角邊經過點D,且直角頂點EAB邊上滑動(點E不與點AB重合),另一直角邊與∠CBM的平分線BF相交于點F

1)如圖1,當點EAB邊得中點位置時:

通過測量DE、EF的長度,猜想DEEF滿足的數(shù)量關系是

連接點EAD邊的中點N,猜想NEBF滿足的數(shù)量關系是 ,請證明你的猜想.

2)如圖2,當點EAB邊上的任意位置時,猜想此時DEEF有怎樣的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB12,點EAD上的一點,AE6BE的垂直平分線交BC的延長線于點F,連接EFCD于點G.若GCD的中點,則BC的長是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明袋子中有1個紅球和3個白球,這些球除顏色外都相同.

1)從袋中任意摸出2個球,用樹狀圖或列表求摸出的2個球顏色不同的概率;

2)在袋子中再放入x個白球后,進行如下實驗:從袋中隨機摸出1個球,記錄下顏色后放回袋子中并攪勻.經大量試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.95左右,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD中,PAB邊上的一點(不與AB重合),PE平分∠APC交射線ADE,過EEMPE交直線CPM,交直線CDN

1)求證:CM=CN;

2)若ABBC=43

①當=   時,E恰好是AD的中點;

②如圖2,當△PEM與△PBC相似時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD交于點O,OE平分∠AOC,點FAB上一點(不與點AO重合),過點FFGOE,交CD于點G,若∠AOD=110°,則∠AFG度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知將一副三角板(直角三角板OAB和直角三角板OCD,AOB=90°,ABO=45°,CDO=90°,COD=60°)

(1)如圖1擺放,點O、A、C在一直線上,則∠BOD的度數(shù)是多少?

(2)如圖2,將直角三角板OCD繞點O逆時針方向轉動,若要OB恰好平分∠COD,則∠AOC的度數(shù)是多少?

(3)如圖3,當三角板OCD擺放在∠AOB內部時,作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內繞點O任意轉動,∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.

查看答案和解析>>

同步練習冊答案