【題目】拋物線y=﹣x2+(m﹣1)x+m與y軸交點(diǎn)坐標(biāo)是(0,3).
(1)求出m的值;
(2)求拋物線與x軸的交點(diǎn);
(3)當(dāng)x取什么值時(shí),y<0?
【答案】(1)m的值為3;(2)(﹣1,0),(3,0);(3)當(dāng)x<﹣1或x>3時(shí),y<0.
【解析】
(1)把(0,3)代入y=-x2+(m-1)x+m可求出m的值;
(2)由(1)得拋物線解析式為y=-x2+2x+3,然后解方程-x2+2x+3=0得拋物線與x軸的交點(diǎn)坐標(biāo);
(3)利用函數(shù)圖象,寫出拋物線在x軸下方所對(duì)應(yīng)的自變量的范圍即可.
解:(1)把(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,
即m的值為3;
(2)拋物線解析式為y=﹣x2+2x+3,
當(dāng)y=0時(shí),﹣x2+2x+3=0,解得x1=﹣1,x2=3,
所以拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣1,0),(3,0);
(3))∵當(dāng)x=1時(shí),y=4,
∴圖象的頂點(diǎn)坐標(biāo)為:(1,4),
如圖所示:
,
故當(dāng)x<﹣1或x>3時(shí),y<0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王和小張利用如圖所示的轉(zhuǎn)盤做游戲,轉(zhuǎn)盤的盤面被分為面積相等的4個(gè)扇形區(qū)域,且分別標(biāo)有數(shù)字1,2,3,4.游戲規(guī)則如下:兩人各轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,分別記錄指針停止時(shí)所對(duì)應(yīng)的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問題:
(1)小王轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤指針停止,對(duì)應(yīng)盤面數(shù)字為奇數(shù)的概率是多少?
(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】晨光中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長為x米.
(1)若平行于墻的一邊長為y米,直接寫出y與x的函數(shù)關(guān)系式及其自變量x的取值范圍;
(2)設(shè)這個(gè)苗圃園的面積為S,求S與x之間的函數(shù)關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.
(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC = 90°,BC = 1,AC =.
(1)以點(diǎn)B為旋轉(zhuǎn)中心,將△ABC沿逆時(shí)針方向旋轉(zhuǎn)90°得到△A′BC′,請畫出變換后的圖形;
(2)求點(diǎn)A和點(diǎn)A′之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車產(chǎn)業(yè)的發(fā)展,有效促進(jìn)我國現(xiàn)代化建設(shè).某汽車銷售公司2015年盈利1500萬元,到2017年盈利2160萬元,且從2015年到2017年,每年盈利的年增長率相同.
(1)求平均年增長率?
(2)若該公司盈利的年增長率繼續(xù)保持不變,預(yù)計(jì)2018年盈利多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com