【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣5,0),對(duì)稱軸為直線x=﹣2,給出四個(gè)結(jié)論:①b2>4ac;②4a+b=0;③函數(shù)圖象與x軸的另一個(gè)交點(diǎn)為(2,0);④若點(diǎn)(﹣4,y1)、(﹣1,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2 . 其中正確結(jié)論是( )
A. ②④ B. ①④ C. ①③ D. ②③
【答案】B
【解析】
①根據(jù)拋物線與x軸交點(diǎn)個(gè)數(shù)可判斷;②根據(jù)拋物線對(duì)稱軸可判斷;③根據(jù)拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)可判斷;④根據(jù)兩點(diǎn)離對(duì)稱軸遠(yuǎn)近可判斷.
解:由函數(shù)圖象可知拋物線與x軸有2個(gè)交點(diǎn),
∴b2-4ac>0即b2>4ac,故①正確;
∵對(duì)稱軸為直線x=-2,
∴-=-2,即4a-b=0,故②錯(cuò)誤;
∵拋物線與x軸的交點(diǎn)A坐標(biāo)為(-5,0)且對(duì)稱軸為x=-2,
∴拋物線與x軸的另一交點(diǎn)為(1,0),故③錯(cuò)誤;
∵對(duì)稱軸為x=-2,開口向下,
∴點(diǎn)(-4,y1)比點(diǎn)(-1,y2)離對(duì)稱軸遠(yuǎn),
∴y1<y2,故④正確;
綜上,正確的結(jié)論是:①④,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB:與直線AC:都與雙曲線交于點(diǎn)A(1,m),這兩條直線分別與軸交于B、C兩點(diǎn).
(1)求和的值.
(2)將直線AB沿軸正方向平移,平移后交直線AC于點(diǎn)D,交軸于點(diǎn)M,已知M的橫坐標(biāo)為6,求△MCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)B(3,2),點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)O對(duì)稱,BA⊥x軸于點(diǎn)A,CD⊥x軸于點(diǎn)D.
(1)求這個(gè)反比函數(shù)的表達(dá)式;
(2)求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)y2=ax+b 的圖象交于點(diǎn) A(1,4)和點(diǎn) B(m,-2),直線 AB 交 x 軸于點(diǎn) C.
(1)求這兩個(gè)函數(shù)的關(guān)系式;
(2)求△OAB 的面積;
(3)結(jié)合圖象直接寫出 > 時(shí),x 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校射擊隊(duì)從甲、乙、丙、丁四人中選拔一人參加市運(yùn)動(dòng)會(huì)射擊比賽,在選拔比賽中,每人射擊10次,他們10次成績(jī)的平均數(shù)及方差如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均數(shù)/環(huán) | 9.5 | 9.5 | 9.6 | 9.6 |
方差/環(huán)2 | 5.1 | 4.7 | 4.5 | 5.1 |
請(qǐng)你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,M為BC上的點(diǎn),E是AD的延長(zhǎng)線的點(diǎn),且AE=AM,過E作EF⊥AM垂足為F,EF交DC于點(diǎn)N.
(1)求證:AF=BM;
(2)若AB=12,AF=5,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高.點(diǎn)O是AC中點(diǎn),延長(zhǎng)DO到E,使OE=OD,連接AE,CE.
(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用對(duì)稱性可設(shè)計(jì)出美麗的圖案.在邊長(zhǎng)為1的方格紙中,有如圖所示的四邊形(頂點(diǎn)都在格點(diǎn)上).
(1)先作出該四邊形關(guān)于直線成軸對(duì)稱的圖形,再作出你所作的圖形連同原四邊形繞0點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90o后的圖形;
(2)完成上述設(shè)計(jì)后,整個(gè)圖案的面積等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃組織師生共300人參加一次大型公益活動(dòng),如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多17個(gè).
(1)求每輛大客車和每輛小客車的乘客座位數(shù);
(2)由于最后參加活動(dòng)的人數(shù)增加了30人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,且所有參加活動(dòng)的師生都有座位,求租用小客車數(shù)量的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com