【題目】某工廠現(xiàn)有甲種原料263千克,乙種原料314千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共100件.生產(chǎn)一件產(chǎn)品所需要的原料及生產(chǎn)成本如下表所示:
甲種原料(單位:千克) | 乙種原料(單位:千克) | 生產(chǎn)成本(單位:元) | |
A產(chǎn)品 | 3 | 2 | 120 |
B產(chǎn)品 | 2.5 | 3.5 | 200 |
(1)該工廠現(xiàn)有的原料能否保證生產(chǎn)需要?若能,有幾種生產(chǎn)方案?請(qǐng)你設(shè)計(jì)出來.
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品的總成本為y元,其中生產(chǎn)A產(chǎn)品x件,試寫出y與x之間的函數(shù)關(guān)系,并利用函數(shù)的性質(zhì)說明(1)中哪種生產(chǎn)方案總成本最低?最低生產(chǎn)總成本是多少?
【答案】(1)生產(chǎn)A、B產(chǎn)品分別為24件,76件;25件,75件;26件,74件.(2)17920元.
【解析】
(1)設(shè)生產(chǎn)A產(chǎn)品x件,則生產(chǎn)B產(chǎn)品(100﹣x)件.依題意列出方程組求解,由此判斷能否保證生產(chǎn).
(2)設(shè)生產(chǎn)A產(chǎn)品x件,總造價(jià)是y元,當(dāng)x取最大值時(shí),總造價(jià)最低.
解:(1)假設(shè)該廠現(xiàn)有原料能保證生產(chǎn),且能生產(chǎn)A產(chǎn)品x件,則能生產(chǎn)B產(chǎn)品(100﹣x)件.
根據(jù)題意,有,
解得:24≤x≤26,
由題意知,x應(yīng)為整數(shù),故x=24或x=25或x=26.
此時(shí)對(duì)應(yīng)的100﹣x分別為76、75、74.
即該廠現(xiàn)有原料能保證生產(chǎn),可有三種生產(chǎn)方案:
生產(chǎn)A、B產(chǎn)品分別為24件,76件;25件,75件;26件,74件.
(2)生產(chǎn)A產(chǎn)品x件,則生產(chǎn)B產(chǎn)品(100﹣x)件.根據(jù)題意可得
y=120x+200(100﹣x)=﹣80x+20000,
∵﹣80<0,
∴y隨x的增大而減小,從而當(dāng)x=26,即生產(chǎn)A產(chǎn)品26件,B產(chǎn)品74件時(shí),生產(chǎn)總成本最底,最低生產(chǎn)總成本為y=﹣80×26+20000=17920元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長AP交CD于F點(diǎn),連結(jié)CP并延長CP交AD于Q點(diǎn).給出以下結(jié)論:
①四邊形AECF為平行四邊形;
②∠PBA=∠APQ;
③△FPC為等腰三角形;
④△APB≌△EPC.
其中正確結(jié)論的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)教研部門對(duì)本區(qū)初二年級(jí)的學(xué)生進(jìn)行了一次隨機(jī)抽樣問卷調(diào)查,其中有這樣一個(gè)問題:老師在課堂上放手讓學(xué)生提問和表達(dá)( )
A.從不 B.很少 C.有時(shí) D.常常 E.總是
答題的學(xué)生在這五個(gè)選項(xiàng)中只能選擇一項(xiàng).下面是根據(jù)學(xué)生對(duì)該問題的答卷情況繪制的兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級(jí)的學(xué)生參加了本次問卷調(diào)查;
(2)請(qǐng)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,“總是”的圓心角為 .(精確到度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程總有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若此方程的兩根均為正整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)完“數(shù)據(jù)的收集、整理與描述”后,李明對(duì)本班期中考試數(shù)學(xué)成績(成績均為整數(shù),滿分為150分)作了統(tǒng)計(jì)分析(每個(gè)人的成績各不相同,且最低分為50分),繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖(為避免分?jǐn)?shù)出現(xiàn)在分組的端點(diǎn)處,李明將分點(diǎn)取小數(shù)),請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:
分組 | 頻數(shù) | 頻率 |
49.5~69.5 | 2 | 0.04 |
69.5~89.5 | 8 | |
89.5~109.5 | 20 | 0.40 |
109.5~129.5 | 0.32 | |
129.5~150.5 | 4 | 0.08 |
合計(jì) | 1 |
(1)分布表中______,______,______;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若畫該班期中考試數(shù)學(xué)成績的扇形統(tǒng)計(jì)圖,則分?jǐn)?shù)在89.5~109.5之間的扇形圓心角的度數(shù)是____;
(4)張亮同學(xué)成績?yōu)?/span>109分,他說:“我們班上比我成績高的人還有,我要繼續(xù)努力.”他的說法正確嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,若BC=6,tan∠CDA=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①、②,在平面直角坐標(biāo)系中,一邊長為2的等邊三角板CDE恰好與坐標(biāo)系中的△OAB重合,現(xiàn)將三角板CDE繞邊AB的中點(diǎn)G(G點(diǎn)也是DE的中點(diǎn)),按順時(shí)針方向旋轉(zhuǎn)180°到△C′ED的位置.
(1)求C′點(diǎn)的坐標(biāo);
(2)求經(jīng)過O、A、C′三點(diǎn)的拋物線的解析式;
(3)如圖③,⊙G是以AB為直徑的圓,過B點(diǎn)作⊙G的切線與x軸相交于點(diǎn)F,求切線BF的解析式;
(4)在(3)的條件下,拋物線上是否存在一點(diǎn)M,使得△BOF與△AOM相似?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園手機(jī)”現(xiàn)象越來越受到社會(huì)的關(guān)注.“寒假”期間,某校小記者隨機(jī)調(diào)查了某地區(qū)若干名學(xué)生和家長對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)求這次調(diào)查的家長人數(shù),并補(bǔ)全圖1;
(2)求圖2中表示家長“贊成”的圓心角的度數(shù);
(3)已知某地區(qū)共6500名家長,估計(jì)其中反對(duì)中學(xué)生帶手機(jī)的大約有多少名家長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),tan∠DBA=.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com