【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分ACABM,

1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長.

【答案】136°;(28.

【解析】

1)由ABAC,∠A36°,可求得∠ACB的度數(shù),又由直線MN垂直平分ACABM,根據(jù)線段垂直平分線的性質(zhì),可求得AMCM,即可求得∠ACM的度數(shù),繼而求得∠BCM的度數(shù);

2)由AMCM,可得BCM的周長=BCAB

解:(1)∵ABAC,∠A36°,

∴∠B=∠ACB72°,

∵直線MN垂直平分ACABM,

AMCM,

∴∠ACM=∠A36°,

∴∠BCM=∠ACBACM36°;

2)∵AMCM

∴△BCM的周長=BCCMBMBCAMBMBCAB358

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊場比賽,每場比賽都要分出勝負,每隊勝一場分, 負一場得分,積分超過分才能獲得參賽資格.

(1)已知甲隊在初賽階段的積分為分,甲隊初賽階段勝、負各多少場;

(2)如果乙隊要獲得參加決賽資格,那么乙隊在初賽階段至少要勝多少場?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC=60°,∠C=40°,PQ分別在BC,CA上,AP,BQ分別是∠BAC,∠ABC的角平分線.求證:BQ+AQ=AB+BP

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD的邊長為8,點E、F分別在AD、CD上,AEDF2,BEAF相交于點G,點HBF的中點,連接GH,則GH的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形中,是邊上一點(點不與點重合),連接

(感知)如圖1,過點于點.易證.(不需要證明)

(探究)如圖2,取的中點,過點于點,交于點

1)求證:

2)連接.若,則的長為___________

(應(yīng)用)如圖3,取的中點,連接.過點于點,連接.若,則四邊形的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.

(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊BC延長線上一點,連結(jié)DE,過頂點B作BF⊥DE,垂足為F,BF分別交AC于H,交BC于G.
(1)求證:BG=DE;
(2)若點G為CD的中點,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的面積為3,BDDC21,EAC的中點,ADBE相交于點P,那么四邊形PDCE的面積為(  )

A. B. C. D.

查看答案和解析>>

同步練習冊答案