【題目】如圖,點(diǎn)將線段分成兩部分,如果,那么稱點(diǎn)為線段的黃金分割點(diǎn),某教學(xué)興趣小組在進(jìn)行研究時(shí),由黃金分割點(diǎn)聯(lián)想到黃金分割線,類(lèi)似的給出黃金分割線的定義:一直線將一個(gè)面積為的圖形分成兩部分,這兩部分的面積分別為,,如果,那么稱這條直線為該圖形的黃金分割線.

如圖,在中,,的平分線交于點(diǎn),請(qǐng)問(wèn)直線是不是的黃金分割線,并證明你的結(jié)論;

如圖,在邊長(zhǎng)為的正方形中,點(diǎn)是邊上一點(diǎn),若直線是正方形的黃金分割線,求的長(zhǎng).

【答案】直線的黃金分割線,理由見(jiàn)解析;(2)長(zhǎng)為

【解析】

(1)如圖2,根據(jù)等高三角形的面積比等于底的比可得,

要證直線CD是△ABC的黃金分割線,只需證,只需證,易證BC=AD,只需證只需證△BCD∽△BAC即可;
(2)設(shè)BE=x,如圖3,易得,,由直線AE是正方形ABCD的黃金分割線可得由此得到關(guān)于x的方程,解這個(gè)方程就可解決問(wèn)題.

解:直線的黃金分割線.

理由:如圖,

,,

平分,

,

,,

,,

,

,

,

,

∴直線的黃金分割線;

設(shè),如圖,

∵正方形的邊長(zhǎng)為

,

∵直線是正方形的黃金分割線,

,

,

整理得:,

解得:,

∵點(diǎn)是邊上一點(diǎn),

,

,

長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)的農(nóng)作物主要以水稻、玉米和小麥為主,種植太單調(diào)不利于土壤環(huán)境的維護(hù),而且對(duì)農(nóng)業(yè)的發(fā)展也沒(méi)有促進(jìn)作用,為了鼓勵(lì)大豆的種植,國(guó)家對(duì)種植大豆的農(nóng)民給予補(bǔ)貼,調(diào)動(dòng)農(nóng)民種植大豆的積極性.我市乃大豆之鄉(xiāng),今年很多合作社調(diào)整種植結(jié)構(gòu),把種植玉米改成種植大豆,今年我市某合作社共收獲大豆200噸,計(jì)劃采用批發(fā)和零售兩種方式銷(xiāo)售.經(jīng)市場(chǎng)調(diào)查,批發(fā)平均每天售出14噸,由于今年我市小型大豆深加工企業(yè)的增多,預(yù)計(jì)能提前完成銷(xiāo)售任務(wù),在平均每天批發(fā)量不變的情況下,實(shí)際平均每天的零售量比原計(jì)劃的2倍還多14噸,結(jié)果提前5天完成銷(xiāo)售任務(wù)。那么原計(jì)劃零售平均每天售出多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABPACQ,BPCQ.

(1)求證:△ABP≌△ACQ;

(2)請(qǐng)判斷△APQ是什么三角形,試說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)和點(diǎn),點(diǎn)和點(diǎn)軸上的兩個(gè)定點(diǎn).

1)當(dāng)線段向左平移到某個(gè)位置時(shí),若的值最小,求平移的距離.

2)當(dāng)線段向左或向右平移時(shí),是否存在某個(gè)位置,使四邊形的周長(zhǎng)最?請(qǐng)說(shuō)明如何平移?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:對(duì)于一些次數(shù)較高或者是比較復(fù)雜的式子進(jìn)行因式分解時(shí),換元法是一種常用的方法,下面是某同學(xué)用換元法對(duì)多項(xiàng)式進(jìn)行因式分解的過(guò)程.

解:設(shè)

原式(第一步)

(第二步)

(第三步)

(第四步)

回答下列問(wèn)題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的__________(填代號(hào)).

A.提取公因式 B.平方差公式

C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)按照因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止的要求,該多項(xiàng)式分解因式的最后結(jié)果為______________

3)請(qǐng)你模仿以上方法對(duì)多項(xiàng)式進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線分別與軸、軸交于、兩點(diǎn),平分于點(diǎn),點(diǎn)為線段上一點(diǎn),過(guò)點(diǎn)軸于點(diǎn),已知,,且滿足

1)求兩點(diǎn)的坐標(biāo);

2)若點(diǎn)中點(diǎn),延長(zhǎng)軸于點(diǎn),在的延長(zhǎng)線上取點(diǎn),使,連接

軸的位置關(guān)系怎樣?說(shuō)明理由;

②求的長(zhǎng);

3)如圖2,若點(diǎn)的坐標(biāo)為,軸的正半軸上一動(dòng)點(diǎn),是直線上一點(diǎn),且的坐標(biāo)為,是否存在點(diǎn)使為等腰直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+4x+5x軸,y軸分別交于A,B,C三點(diǎn).

(1)請(qǐng)直接寫(xiě)出A,B,C三點(diǎn)坐標(biāo):A(_____,_____)、B(_____,______)、C(______,______)

(2)若⊙M過(guò)A、B、C三點(diǎn),求圓心M的坐標(biāo),并求⊙M的面積;

(3)(2)的條件下,在拋物線上是否存在點(diǎn)N,使得由A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案