如果y=-x+2,當(dāng)x______時,y≤0.
∵y=-x+2,y≤0,
∴-x+2≤0,
∴-x≤-2,
x≥2.
故答案為:≥2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,A、B是⊙O上的兩點,AC是過A點的一條直線,如果∠AOB=120°,那么當(dāng)∠CAB的度數(shù)等于
60
度時,AC才能成為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于C點.
(1)試判斷b與c的積是正數(shù)還是負數(shù),為什么?
(2)如果AB=4,且當(dāng)拋物線y=-x2+bx+c的圖象向左平移一個單位時,其頂點在y軸上.
①求原拋物線的表達式;
②設(shè)P是線段OB上的一個動點,過點P作PE⊥x軸交原拋物線于E點.問:是否存在P點,使直線BC把△精英家教網(wǎng)PCE分成面積之比為3:1的兩部分?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑OA=
5
,弦AB=4,點C在弦AB上,以點C為圓心,CO為半徑的圓與線段OA相交于點E.
(1)求cosA的值;
(2)設(shè)AC=x,OE=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當(dāng)點C在AB上運動時,⊙C是否可能與⊙O相切?如果可能,請求出當(dāng)⊙C與⊙O相切時的AC的長;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC=1,點D,E在直線BC上運動.設(shè)BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,試確定y與x之間的函數(shù)關(guān)系式;
(2)如果∠BAC=α,∠DAE=β,當(dāng)α,β滿足怎樣的關(guān)系時,(1)中y與x之間的函數(shù)關(guān)系式還成立?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料再回答問題:
對于函數(shù)y=x2,當(dāng)x=1時,y=1,當(dāng)x=-1時,y=1;當(dāng)x=2時,y=4,當(dāng)x=-2時,y=4;…
而點(1,1)與(-1,1),(2,4)與(-2,4),…,都關(guān)于y軸對稱.顯然,如果點(x0,y0)在函數(shù)y=x2的圖象上,那么,它關(guān)于y軸對稱的點(-x0,y0)也在函數(shù)y=x2的圖象上,這時,我們說函數(shù)y=x2關(guān)于y軸對稱.
一般地,如果對于一個函數(shù),當(dāng)自變量x在允許范圍內(nèi)取值時,若x=x0和x=-x0時,函數(shù)值都相等,我們說函數(shù)的圖象關(guān)于y軸對稱.
問題:
(1)對于函數(shù)y=x3,當(dāng)自變量x取一對相反數(shù)時,函數(shù)值也得到一對相反數(shù),則函數(shù)y=x3的圖象關(guān)于
原點
原點
對稱.(“x軸”、“y軸”或“原點”).
(2)下列函數(shù):①y=x3+2x;②y=2x4+4x2;③y=x+
1
x
;④y=-x-2 中,其圖象關(guān)于y軸對稱的有
②④
②④
,關(guān)于原點對稱的有
①③
①③
(只填序號).
(3)請你寫出一個我們學(xué)過的函數(shù)關(guān)系式
y=
k
x
(k≠0)
y=
k
x
(k≠0)
,其圖象關(guān)于直線y=x對稱.

查看答案和解析>>

同步練習(xí)冊答案