【題目】1)對數(shù)軸上的點P進行如下操作:先把點P表示的數(shù)乘以,再把所得數(shù)對應(yīng)的點向右平移1個單位,得到點P的對應(yīng)點P′.點AB在數(shù)軸t,對線段AB上的每個點進行上述操作后得到線段AB′,其中點A,B的對應(yīng)點分別為A′,B′.如圖1,若點A表示的數(shù)是﹣3,則點A′表示的數(shù)是   ,若點B′表示的數(shù)是2,則點B表示的數(shù)是   ;已知線段AB上的點E經(jīng)過上述操作后得到的對應(yīng)點E'E重合,則點E表示的數(shù)是   

2)在平面直角坐標(biāo)系xOy中,已知△ABC的頂點A(﹣2,0),B2,0),C2,4),對△ABC及其內(nèi)部的每個點進行如下操作:把每個點的橫、縱坐標(biāo)都乘以同個實數(shù)a,將得到的點先向右平移m單位,冉向上平移n個單位(m0,n0),得到△ABC及其內(nèi)部的點,其中點A,B的對應(yīng)點分別為A′(1,2),B′(3,2).△ABC內(nèi)部是否存在點F,使得點F經(jīng)過上述操作后得到的對應(yīng)點F′與點F重合,若存在,求出點F的坐標(biāo);若不存在請說明理由.

【答案】103;(2(44)

【解析】

1)根據(jù)題目規(guī)定,以及數(shù)軸上的數(shù)向右平移用加計算即可求出點A′,設(shè)點B表示的數(shù)為a,根據(jù)題意列出方程求解即可得到點B表示的數(shù),設(shè)點E表示的數(shù)為b,根據(jù)題意列出方程計算即可得解;
2)先根據(jù)向上平移橫坐標(biāo)不變,縱坐標(biāo)加,向右平移橫坐標(biāo)加,縱坐標(biāo)不變求出平移規(guī)律,然后設(shè)點F的坐標(biāo)為(x,y),根據(jù)平移規(guī)律列出方程組求解即可.

解:(1)點A:﹣+1=﹣1+10

設(shè)點B表示的數(shù)為a,則a+12,

解得a3,

設(shè)點E表示的數(shù)為b,則b+1b,

解得b;

故答案為:0,3;

2)根據(jù)題意,得:,

解得: ,

設(shè)點F的坐標(biāo)為(x,y),

對應(yīng)點F與點F重合,

x+2x,y+2y,

解得xy4

所以,點F的坐標(biāo)為(44).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,D、E分別在BC、AC邊上.

(1)如圖1,F(xiàn)是線段AD上的一點,連接CF,若AF=CF;

①求證:點FAD的中點;

②判斷BECF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

(2)如圖2,把△DEC繞點C順時針旋轉(zhuǎn)α角(0<α<90°),點FAD的中點,其他條件不變,判斷BECF的關(guān)系是否不變?若不變,請說明理由;若要變,請求出相應(yīng)的正確結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ACB=90°,ABC=25°,OAB的中點. OA繞點O逆時針旋轉(zhuǎn)θ °OP0<θ<180,當(dāng)BCP恰為軸對稱圖形時,θ的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點A,B,點B的橫坐標(biāo)是4.點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方.

(1)k的值

(2)設(shè)直線PA,PBx軸分別交于點M,N,求證:△PMN是等腰三角形;

(3)設(shè)點Q是反比例函數(shù)圖象上位于P,B之間的動點(與點PB不重合),連接AQ,BQ,比較∠PAQ與∠PBQ的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(問題情境)

課外興趣小組活動時,老師提出了如下問題:

如圖,在△ABC中,AD是△ABC的中線,若AB10,AC8,求AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點E,使DEAD,連接BE.請根據(jù)小明的方法思考:

Ⅰ.由已知和作圖能得到△ADC≌△EDB,依據(jù)是________

ASSS BSAS CAAS DASA

Ⅱ.三角形的三邊關(guān)系可求得AD的取值范圍是________

解后反思:題目中出現(xiàn)中點、中線等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形之中.

2)(學(xué)會運用)

如圖,AD ABC的中線,點EBC的延長線上,CE=AB, BAC=BCA, 求證:AE=2AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,ABAC24厘米,∠B=∠CBC16厘米,點DAB的中點.點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為v厘米/秒,則當(dāng)BPDCQP全等時,v的值為_____ 厘米/秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把代數(shù)式通過配湊等手段,得到局部完全平方式,再進行有關(guān)運算和解題,這種解題方法叫做配方法.

如:①用配方法分解因式:a2+6a+8,

解:原式=a2+6a+8+11a2+6a+91=(a+2)(a+4

Ma22ab+2b22b+2,利用配方法求M的最小值,

解:a22ab+2b22b+2a22ab+b2+b22b+1+1=(ab2+b12+1

∵(ab2≥0,(b12≥0

∴當(dāng)ab1時,M有最小值1

請根據(jù)上述材料解決下列問題:

1)在橫線上添加一個常數(shù),使之成為完全平方式:x2x+   

2)用配方法因式分解:x24xy+3y2

3)若Mx2+2x1,求M的最小值.

4)已知x2+2y2+z22xy2y4z+50,則x+y+z的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由太原開往運城的D5303次列車,途中有6個停車站,這次列車的不同票價最多有( )

A. 28 B. 15 C. 56 D. 30

查看答案和解析>>

同步練習(xí)冊答案