在Rt△ABC中,斜邊AB是直角邊AC的3倍,下列式子正確的是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:根據(jù)題意,斜邊AB是直角邊AC的3倍,由勾股定理可得BC是AC的2倍,由三角函數(shù)的定義可得sinB、sinA、tanB、tanA的值,分析可得答案.
解答:根據(jù)題意,在Rt△ABC中,斜邊AB是直角邊AC的3倍,
=,即sinB=,
進而由勾股定理可得,BC=2AC,即tanB=,tanA=2;
sinA=;
故選D.
點評:本題考查了解直角三角形的應用,要熟練掌握好邊角之間的關系及三角函數(shù)的定義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:數(shù)學教研室 題型:013

如圖所示,在Rt△ABC中,∠C=90°,∠A=35°,以直角頂點為旋轉中心,將△ABC旋轉到的位置,其中分別是A、B對應點,且點B在斜邊上,直角邊交AB于D,這時∠BDC的度數(shù)是

[  ]

A.70°
B.90°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學 來源:非常講解·教材全解全析數(shù)學八年級上(配課標北師大版) 課標北師大版 題型:044

如圖所示,Rt△ABC中,∠C=90°,∠ABC=60°,△ABC以點C為中心旋轉到△的位置,使B在斜邊上,C與AB相交于D,試確定∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:013

如圖所示,在Rt△ABC中,∠C=90°,∠A=35°,以直角頂點為旋轉中心,將△ABC旋轉到的位置,其中分別是A、B對應點,且點B在斜邊上,直角邊交AB于D,這時∠BDC的度數(shù)是

[  ]

A.70°
B.90°
C.100°
D.105°

查看答案和解析>>

同步練習冊答案