【題目】如圖,在矩形ABCD中,AB=8,BC=12,點EBC的中點,連接AE,將ABE沿AE折疊,點B落在點F處,連接FC,則tanECF=

A B C D

【答案】B

【解析】

試題分析:根據(jù)翻折變換的性質(zhì)得到BE=FEBEA=FEA,根據(jù)三角形外角的性質(zhì)得到BEA+FEA=EFC+ECF,得到BEA=ECF,根據(jù)正切的概念解答即可.

解:BC=12,點EBC的中點,

EC=BE=6

由翻折變換的性質(zhì)可知,BE=FEBEA=FEA,

EF=EC,

∴∠EFC=ECF,

∵∠BEA+FEA=EFC+ECF

∴∠BEA=ECF

tanBEA==,

tanECF=,

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:x﹣x3=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC,BD相交于點O,E為AB的中點,DEAB.

(1)求ABC的度數(shù);

(2)如果,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是數(shù)值轉(zhuǎn)換機的示意圖,小明按照其對應關系畫出了yx的函數(shù)圖象(如圖):

1)分別寫出當0≤x≤4x4時,yx的函數(shù)關系式:

2)求出所輸出的y的值中最小一個數(shù)值;

3)寫出當x滿足什么范圍時,輸出的y的值滿足3≤y≤6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A. b的指數(shù)是0 B. b沒有系數(shù) C. a是單項式 D. ﹣3是一次單項式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正四邊形和正八邊形鑲嵌成一個平面,則在某一個頂點處,正四邊形和正八邊形的個數(shù)分別為( )
A.2個和1個
B.1個和2個
C.3個和1個
D.1個和3個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組數(shù)中,成比例的是( )
A.﹣7,﹣5,14,5
B.﹣6,﹣8,3,4
C.3,5,9,12
D.2,3,6,12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線y=﹣+cx軸交于A、B兩點(點A在點B的左側),交y軸的正半軸于點C,其頂點為M,MHx軸于點HMAy軸于點N,sinMOH=

1)求此拋物線的函數(shù)表達式;

2)過H的直線與y軸相交于點P,過O,M兩點作直線PH的垂線,垂足分別為E,F,若=時,求點P的坐標;

3)將(1)中的拋物線沿y軸折疊,使點A落在點D處,連接MD,Q為(1)中的拋物線上的一動點,直線NQx軸于點G,當Q點在拋物線上運動時,是否存在點Q,使ANGADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我省2013年的快遞業(yè)務量為1.4億件,受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展,2014年增速位居全國第一2015年的快遞業(yè)務量達到4.5億件,2014年與2015年這兩年的平均增長率為x,則下列方程正確的是(  )

A. 1.4(1+x)=4.5 B. 1.4(1+2x)=4.5

C. 1.4(1+x)2=4.5 D. 1.4(1+x)+1.4(1+x)2=4.5

查看答案和解析>>

同步練習冊答案