【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(A在B的左側(cè)),與y軸交于點C(0,3),已知對稱軸x=1.
(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點P是拋物線L上任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標(biāo);若不能,請說明理由.
【答案】(1)y=﹣x2+2x+3;(2)2≤h≤4;(3)(1,4),(0,3),(,)和(,).
【解析】試題分析:(1)、利用待定系數(shù)法求出拋物線的解析式即可;(2)、先求出直線BC解析式為y=﹣x+3,再求出拋物線頂點坐標(biāo),得出當(dāng)x=1時,y=2;結(jié)合拋物線頂點坐即可得出結(jié)果;(3)、設(shè)P(m,﹣m2+2m+3),Q(﹣3,n),由勾股定理得出PB2=(m﹣3)2+(﹣m2+2m+3)2,PQ2=(m+3)2+(﹣m2+2m+3﹣n)2,BQ2=n2+36,過P點作PM垂直于y軸,交y軸與M點,過B點作BN垂直于MP的延長線于N點,由AAS證明△PQM≌△BPN,得出MQ=NP,PM=BN,則MQ=﹣m2+2m+3﹣n,PN=3﹣m,得出方程﹣m2+2m+3﹣n=3﹣m,解方程即可.
試題解析:(1)、∵拋物線的對稱軸x=1,B(3,0), ∴A(﹣1,0) ∵拋物線y=ax2+bx+c過點C(0,3)
∴當(dāng)x=0時,c=3. 又∵拋物線y=ax2+bx+c過點A(﹣1,0),B(3,0)
∴, ∴∴拋物線的解析式為:y=﹣x2+2x+3;
(2)、∵C(0,3),B(3,0), ∴直線BC解析式為y=﹣x+3, ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴頂點坐標(biāo)為(1,4) ∵對于直線BC:y=﹣x+1,當(dāng)x=1時,y=2;將拋物線L向下平移h個單位長度,[源:∴當(dāng)h=2時,拋物線頂點落在BC上; 當(dāng)h=4時,拋物線頂點落在OB上,
∴將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),
則2≤h≤4;
(3)、設(shè)P(m,﹣m2+2m+3),Q(﹣3,n),
①當(dāng)P點在x軸上方時,過P點作PM垂直于y軸,交y軸與M點,過B點作BN垂直于MP的延長線于N點,如圖所示: ∵B(3,0), ∵△PBQ是以點P為直角頂點的等腰直角三角形,
∴∠BPQ=90°,BP=PQ, 則∠PMQ=∠BNP=90°,∠MPQ=∠NBP, 在△PQM和△BPN中,,
∴△PQM≌△BPN(AAS), ∴PM=BN, ∵PM=BN=﹣m2+2m+3,根據(jù)B點坐標(biāo)可得PN=3﹣m,且PM+PN=6,
∴﹣m2+2m+3+3﹣m=6, 解得:m=1或m=0, ∴P(1,4)或P(0,3).
②當(dāng)P點在x軸下方時,過P點作PM垂直于l于M點,過B點作BN垂直于MP的延長線與N點,
同理可得△PQM≌△BPN, ∴PM=BN, ∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3, 則3+m=m2﹣2m﹣3,
解得m=或. ∴P(,)或(,).
綜上可得,符合條件的點P的坐標(biāo)是(1,4),(0,3),(,)和(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=x2﹣2x,其對稱軸與兩拋物線所圍成的陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,適合采用全面調(diào)查方式的是( )
A. 了解某班同學(xué)某次體育模擬考的測試成績
B. 調(diào)查福州闖江的水質(zhì)情況
C. 調(diào)查“中國詩詞大會”的收視率
D. 調(diào)查某批次汽車的抗撞擊能力
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一根長為10cm的繩子圍成一個三角形,若所圍成的三角形中一邊的長為2cm,且另外兩邊長的值均為整數(shù),則這樣的圍法有( 。
A. 1種B. 2種C. 3種D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦來臨,各大商場都設(shè)計了促進消費增加利潤的促銷措施,“物美”商場把一類雙肩背的書包按進價提高50%進行標(biāo)價,然后再打出8折的優(yōu)惠價,這樣商場每賣出一個書包就可盈利8元,這種書包的進價是( )
A.42元
B.40元
C.38元
D.35元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com