如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0),(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線=-交折線OAB于點(diǎn)E

(1)記△ODE的面積為S,求S的函數(shù)關(guān)系式;

(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形OA1B1C1,試探究OA1B1C1與矩形OABC的重疊部分的面積是否發(fā)生變化,若不變,求出該重疊部分的面積;若改變,請(qǐng)說明理由.

由題意得B(3,1).

若直線經(jīng)過點(diǎn)A(3,0)時(shí),則b

若直線經(jīng)過點(diǎn)B(3,1)時(shí),則b

若直線經(jīng)過點(diǎn)C(0,1)時(shí),則b=1

①若直線與折線OAB的交點(diǎn)在OA上時(shí),即1<b,如圖25-a,

   此時(shí)E(2b,0)

SOE·CO×2b×1=b

②若直線與折線OAB的交點(diǎn)在BA上時(shí),即b,如圖2

此時(shí)E(3,),D(2b-2,1)

SS-(SOCDSOAE SDBE )

= 3-[(2b-1)×1+×(5-2b)·()+×3()]=

(2)如圖3,設(shè)O1A1CB相交于點(diǎn)M,OAC1B1相交于點(diǎn)N,則矩形OA1B1C1與矩形OABC的重疊部分的面積即為四邊形DNEM的面積。

本題答案由無錫市天一實(shí)驗(yàn)學(xué)校金楊建老師草制!

由題意知,DMNE,DNME,∴四邊形DNEM為平行四邊形

根據(jù)軸對(duì)稱知,∠MED=∠NED

又∠MDE=∠NED,∴∠MED=∠MDE,∴MDME,∴平行四邊形DNEM為菱形.

過點(diǎn)DDHOA,垂足為H

由題易知,tan∠DEN,DH=1,∴HE=2,

設(shè)菱形DNEM 的邊長為a,

則在Rt△DHM中,由勾股定理知:,∴

S四邊形DNEMNE·DH

∴矩形OA1B1C1與矩形OABC的重疊部分的面積不發(fā)生變化,面積始終為

     

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形OABC為正方形,邊長為6,點(diǎn)A,C分別在x軸,y軸的正半軸上,點(diǎn)D在OA上,且D的坐標(biāo)為(2,0),P是OB上的一動(dòng)點(diǎn),試求PD+PA和的最小值是( 。
A、2
10
B、
10
C、4
D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0),(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線y=-
12
x
+b交折線OAB于點(diǎn)E.記△ODE的面積為S.
(1)當(dāng)點(diǎn)E在線段OA上時(shí),求S與b的函數(shù)關(guān)系式;并求出b的范圍;
(2)當(dāng)點(diǎn)E在線段AB上時(shí),求S與b的函數(shù)關(guān)系式;并求出b的范圍;
(3)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形OA1B1C1,試探究OA1B1C1與矩形OABC的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吳中區(qū)一模)如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(6,0),(0,2),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線y=-
12
x
+b交折線OAB于點(diǎn)E.
(1)記△ODE的面積為S,求S與b的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形O1A1B1C1,試探究四邊形O1A1B1C1與矩形OABC的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明參加汽車駕駛培訓(xùn),在實(shí)際操作考試時(shí),被要求進(jìn)行啟動(dòng)加速、勻速運(yùn)行、制動(dòng)減速三個(gè)連貫過程,在加速和減速運(yùn)動(dòng)過程中,路程和速度均滿足關(guān)系s=v0t+
12
at2
,v0為加速或減速的起始速度,加速時(shí)a為正,減速時(shí)a為負(fù),勻速時(shí)a=0,加速或減速t秒后的瞬時(shí)速度v=v0+at,小明在操作中瞬時(shí)速度v與時(shí)間t的關(guān)系如圖所示,其中OA為勻加速,AB為勻速,BC為勻減速.
(1)若減速過程與加速過程完全相反,即BC與OA關(guān)于AB的中垂線成軸對(duì)稱,求BC的解析式.
(2)當(dāng)0≤t≤300時(shí),求汽車行駛的路程s與時(shí)間t的函數(shù)關(guān)系式.
(3)汽車行駛t秒后,
①若經(jīng)途中D點(diǎn),過點(diǎn)D作垂線交AB于點(diǎn)E,試證明汽車行駛的路程恰等于四邊形OAED的面積.
②若汽車行駛至M點(diǎn),過點(diǎn)M做垂線交BC于點(diǎn)N,汽車行駛的路程是否等于五邊形OABNM的面積呢?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD與A′B′C′D′以0為位似中心,位似比為1:2.則點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)
A′
A′
.點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)
B′
B′
.線段AB的對(duì)應(yīng)線段是線段
A′B′
A′B′
,∠DAB的對(duì)應(yīng)角是
∠D′A′B′
∠D′A′B′
,線段AD與A′D′的比為
1:2
1:2
.它們關(guān)于點(diǎn)
O
O
位似.△OAB與
△OA′B′
△OA′B′
相似,相似比為
1:2
1:2

查看答案和解析>>

同步練習(xí)冊(cè)答案