如圖,在直角坐標(biāo)系中,直線分別與x軸、y軸交于點M、N,點A、B分別在y軸、x軸上,且∠B=30°,AB=4,將△ABO繞原點O順時針轉(zhuǎn)動一周,當(dāng)AB與直線MN平行時點A的坐標(biāo)為   
【答案】分析:本題需先根據(jù)題意畫出圖形,再根據(jù)∠B=30°,AB=4求出OC和AC的長,即可得出點A的第一個坐標(biāo),再根據(jù)第二個圖與第一個圖的聯(lián)系,得出點A的第二個坐標(biāo),即可求出正確答案.
解答:解:①∵AB=4,∠ABO=30°,
∴OA=2∠BAO=60°,
∴∠OAD=120°,
∵直線MN的解析式為,
∴∠NMO=30°,
∵AB∥MN,
∴∠ADO=∠NMD=30°,
∴∠AOC=30°,
∴AC=OA=1,
∴OC==,
∴點A的坐標(biāo)為(,1);
②∵圖②中的點A與圖①中的點A關(guān)于原點對稱,
∴點A的坐標(biāo)為:(-,-1),
故答案為:(,1)、(-,-1).
點評:本題主要考查了一次函數(shù)的綜合問題,在解題時要能根據(jù)題意畫出圖形并求出點A的坐標(biāo)是本題的關(guān)鍵,這是一道?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點P的坐標(biāo)為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點A的坐標(biāo);
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負(fù)半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當(dāng)△ABC與△CDE相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊答案