(2006•曲靖)如圖,已知EF是梯形ABCD的中位線,若AB=8,BC=6,CD=2,∠B的平分線交EF于G,則FG的長是( )

A.1
B.1.5
C.2
D.2.5
【答案】分析:要求FG的長,即求EF-EG的值.
根據(jù)梯形的中位線定理,可以求得EF的長;要求EG的長,根據(jù)平行線的性質(zhì)和角平分線的定義,發(fā)現(xiàn)等腰三角形BGE即可.
解答:解:∵EF是梯形ABCD的中位線,所以EF=(CD+AB)=(8+2)=5,EF∥AB.
∴∠EGB=∠GBA,
又BG是∠B的平分線,
∴∠EBG=∠GBA.
∴GE=EB=BC=×6=3.
∴FG=EF-GE=5-3=2.
故選C.
點(diǎn)評:本題考查了梯形中位線的性質(zhì)和角平分線的性質(zhì),需同學(xué)們熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動點(diǎn)(B不與A、C重合),以AC為對角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省煙臺市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動點(diǎn)(B不與A、C重合),以AC為對角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年云南省玉溪市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動點(diǎn)(B不與A、C重合),以AC為對角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年云南省曲靖市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對稱,求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動點(diǎn)(B不與A、C重合),以AC為對角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時,平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省三明市大田二中自主招生數(shù)學(xué)模擬試卷(2)(解析版) 題型:解答題

(2006•曲靖)如圖,從⊙O外一點(diǎn)A作⊙O的切線AB、AC,切點(diǎn)分別為B、C,且⊙O直徑BD=6,連接CD、AO.
(1)求證:CD∥AO;
(2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若AO+CD=11,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案