(2006•金華)如圖,點M是直線y=2x+3上的動點,過點M作MN垂直于x軸于點N,y軸上是否存在點P,使△MNP為等腰直角三角形.小明發(fā)現(xiàn):當(dāng)動點M運(yùn)動到(-1,1)時,y軸上存在點P(0,1),此時有MN=MP,能使△NMP為等腰直角三角形.那么,在y軸和直線上是否還存在符合條件的點P和點M呢?請你寫出其它符合條件的點P的坐標(biāo)   
【答案】分析:由題意,應(yīng)分兩類情況討論:當(dāng)MN為直角邊時和當(dāng)MN為斜邊時.
解答:解:當(dāng)M運(yùn)動到(-1,1)時,ON=1,MN=1,
∵M(jìn)N⊥x軸,所以由ON=MN可知,(0,0)就是符合條件的一個P點;
又當(dāng)M運(yùn)動到第三象限時,要MN=MP,且PM⊥MN,
設(shè)點M(x,2x+3),則有-x=-(2x+3),
解得x=-3,所以點P坐標(biāo)為(0,-3).
如若MN為斜邊時,則∠ONP=45°,所以O(shè)N=OP,設(shè)點M(x,2x+3),
則有-x=-(2x+3),
化簡得-2x=-2x-3,
這方程無解,所以這時不存在符合條件的P點;
又當(dāng)點M′在第二象限,M′N′為斜邊時,這時N′P=M′P,∠M′N′P=45°,
設(shè)點M′(x,2x+3),則OP=ON′,而OP=M′N′,
∴有-x=(2x+3),
解得x=-,這時點P的坐標(biāo)為(0,).
因此,其他符合條件的點P坐標(biāo)是(0,0),(0,),(0,-3).
故本題答案為:(0,0),(0,),(0,-3).
點評:本題主要采用分類討論法,來求得符合條件的點P坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2006•金華)如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF交CD于點G,如果∠1=50°,那么∠2的度數(shù)是    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:填空題

(2006•金華)如圖,點M是直線y=2x+3上的動點,過點M作MN垂直于x軸于點N,y軸上是否存在點P,使△MNP為等腰直角三角形.小明發(fā)現(xiàn):當(dāng)動點M運(yùn)動到(-1,1)時,y軸上存在點P(0,1),此時有MN=MP,能使△NMP為等腰直角三角形.那么,在y軸和直線上是否還存在符合條件的點P和點M呢?請你寫出其它符合條件的點P的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省溫州市中考數(shù)學(xué)模擬檢測(3)(解析版) 題型:填空題

(2006•金華)如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF交CD于點G,如果∠1=50°,那么∠2的度數(shù)是    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省金華市義烏市賓王中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2006•金華)如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF交CD于點G,如果∠1=50°,那么∠2的度數(shù)是    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年浙江省金華市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•金華)如圖,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面積為   

查看答案和解析>>

同步練習(xí)冊答案