【題目】如圖,直角ABC中,BAC=90°,D在BC上,連接AD,作BFAD分別交AD于E,AC于F.

(1)如圖1,若BD=BA,求證:ABE≌△DBE;

(2)如圖2,若BD=4DC,取AB的中點(diǎn)G,連接CG交AD于M,求證:GM=2MC;AG2=AFAC.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;證明見(jiàn)解析

【解析】

試題分析:(1)根據(jù)全等三角形的判定定理即可得到結(jié)論;

(2)過(guò)G作GHAD交BC于H,由AG=BG,得到BH=DH,根據(jù)已知條件設(shè)DC=1,BD=4,得到BH=DH=2,根據(jù)平行線分線段成比例定理得到,求得GM=2MC;

過(guò)C作CNAD交AD的延長(zhǎng)線于N,則CNAG,根據(jù)相似三角形的性質(zhì)得到,由知GM=2MC,得到2NC=AG,根據(jù)相似三角形的性質(zhì)得到,等量代換得到,于是得到結(jié)論.

試題解析:(1)在RtABE和RtDBE中,BA=BD,BE=BE,∴△ABE≌△DBE;

(2)過(guò)G作GHAD交BC于H,AG=BG,BH=DH,BD=4DC,設(shè)DC=1,BD=4,BH=DH=2,GHAD,,GM=2MC;

過(guò)C作CNAC交AD的延長(zhǎng)線于N,則CNAG,∴△AGM∽△NCM,,由知GM=2MC,2NC=AG,∵∠BAC=AEB=90°,∴∠ABF=CAN=90°﹣BAE,∴△ACN∽△BAF,AB=AG,2CNAG=AFAC,AG2=AFAC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( 。
A.“任意畫(huà)出一個(gè)等邊三角形,它是軸對(duì)稱圖形”是隨機(jī)事件
B.“任意畫(huà)出一個(gè)平行四邊形,它是中心對(duì)稱圖形”是必然事件
C.“概率為0.0001的事件”是不可能事件
D.任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的一定是5次

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定拋物線的伴隨直線為.例如:拋物線的伴隨直線為

(1)在上面規(guī)定下,拋物線的頂點(diǎn)為 .伴隨直線為 ;拋物線與其伴隨直線的交點(diǎn)坐標(biāo)為 ;

(2)如圖,頂點(diǎn)在第一象限的拋物線與其伴隨直線相交于點(diǎn) (點(diǎn)在點(diǎn) 的右側(cè))與 軸交于點(diǎn)

的值;

如果點(diǎn)是直線上方拋物線的一個(gè)動(dòng)點(diǎn),的面積記為,當(dāng) 取得最大值 時(shí),的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若2m=5,2n=6,則2m+2n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,

(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過(guò)點(diǎn)E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市今年約有140000人報(bào)名參加初中學(xué)業(yè)水平考試,用科學(xué)記數(shù)法表示140000為(
A.14×104
B.14×103
C.1.4×104
D.1.4×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P位于第二象限,距y3個(gè)單位長(zhǎng)度,距x4個(gè)單位長(zhǎng)度,則點(diǎn)P的坐標(biāo)是(

A. (3,4)B. (3,-4)C. (4,-3)D. (4,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=BC , ∠ABC=90°,FAB延長(zhǎng)線上一點(diǎn),點(diǎn)EBC上,且AE=CF

(1)求證:△ABE≌△CBF;
(2)若∠BAE=25°,求∠ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線交于兩點(diǎn),交于點(diǎn).

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)上的一點(diǎn),且以頂點(diǎn)的三角形與似,求點(diǎn)坐標(biāo);

(3)如圖2,瑋拋物線相交于點(diǎn)點(diǎn)直線方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)且與平行的直線與,分別交于點(diǎn),,試探究當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形面積最大,求點(diǎn)坐標(biāo)及最大面積;

(4)若點(diǎn)拋物線的頂點(diǎn),點(diǎn)該拋物線上的一點(diǎn),在,上分別找點(diǎn),使四邊形周長(zhǎng)最小,求出點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案