如圖,凸四邊形ABCD中,點(diǎn)E在邊CD上,連接AE、BE.給出下列五個(gè)關(guān)系式:①ADBC;  ②DE=EC; ③∠1=∠2;  ④∠3=∠4;  ⑤AD+BC=AB .將其中的三個(gè)關(guān)系式作為已知條件、另外兩個(gè)關(guān)系式作為結(jié)論,可以構(gòu)成一些命題(下面各小題的命題須符合此要求).

(1)共計(jì)能夠成           個(gè)命題;

 (2)寫出三個(gè)真命題:

①如果             、                           ,那么             、              ;

②如果                          、              ,那么                           ;

③如果                          、              ,那么             、              .

請(qǐng)選擇上述三個(gè)命題中的一個(gè)寫出它是真命題的理由:

證明:我選擇證明命題      (填序號(hào)),理由如下:

 

                                             

(第28題圖)

                                           

(3)請(qǐng)寫出一個(gè)假命題(不必說明理由):

如果                          、              ,那么                           .

 

 

【答案】

(1)10(3分);(2)表中9個(gè)真命題任選其3(5分),理由略(8分);(3)假命題是:“如果DE=EC、∠1=∠2、∠3=∠4,那么ADBC、AD+BC=AB.”(12分)

【解析】解:請(qǐng)參考下表:

序號(hào)

條件

結(jié)論

命題真假

1

③∠1=∠2

④∠3=∠4

⑤AD+BC=AB

①ADBC

②DE=EC

2

②DE=EC

④∠3=∠4

⑤AD+BC=AB

①ADBC

③∠1=∠2

3

②DE=EC

③∠1=∠2

⑤AD+BC=AB

①ADBC

④∠3=∠4

4

②DE=EC

③∠1=∠2

④∠3=∠4

①ADBC

⑤AD+BC=AB

5

①ADBC

④∠3=∠4

⑤AD+BC=AB

②DE=EC

③∠1=∠2

6

①ADBC

③∠1=∠2

⑤AD+BC=AB

②DE=EC

④∠3=∠4

7

①ADBC

③∠1=∠2

④∠3=∠4

②DE=EC

⑤AD+BC=AB

8

①ADBC

②DE=EC

⑤AD+BC=AB

③∠1=∠2

④∠3=∠4

9

①ADBC

②DE=EC

④∠3=∠4

③∠1=∠2

⑤AD+BC=AB

10

①ADBC

②DE=EC

③∠1=∠2

④∠3=∠4

⑤AD+BC=AB

根據(jù)表格容易知道本題答案應(yīng)為:

(1)10(3分);(2)表中9個(gè)真命題任選其3(5分),理由略(8分);(3)假命題是:“如果DE=EC、∠1=∠2、∠3=∠4,那么ADBC、AD+BC=AB.”(12分)

本題考查與梯形有關(guān)的問題,在梯形中通常作輔助線來構(gòu)造三角形,轉(zhuǎn)移有關(guān)線段來求解

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知凸四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,且△ABC,△ACD,△ABD的面積分別為S1=5,S2=10,S3=6.求△ABO的面積(如圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在凸四邊形ABCD中,AB的長(zhǎng)為2,P是邊AB的中點(diǎn),若∠DAB=∠ABC=∠PDC=90°,則四邊形ABCD的面積的最小值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在凸四邊形中,∠ABC=30°,∠ADC=60°,AD=DC.
(1)如圖②,若連接AC,則△ADC的形狀是
等邊
等邊
三角形.你是根據(jù)哪個(gè)判定定理?
答:
一個(gè)內(nèi)角為60°的等腰三角形是等邊三角形
一個(gè)內(nèi)角為60°的等腰三角形是等邊三角形
.(請(qǐng)寫出定理的具體內(nèi)容)
(2)如圖③,若在四邊形ABCD的外部以BC為一邊作等邊△BCE,并連接AE,請(qǐng)問:BD與AE相等嗎?若相等,請(qǐng)加以證明;若不相等,請(qǐng)說明理由.
(3)在第(2)題的前提下,請(qǐng)你說明BD2=AB2+BC2成立的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知矩形OABC的邊OC的長(zhǎng)為方程x2-x-6=0的一根,如圖建立平面直角坐標(biāo)系,其中精英家教網(wǎng)A、C兩點(diǎn)分別在x軸、y軸上.將△ABC沿AC翻折,點(diǎn)B落到B′處,B′C交x軸于點(diǎn)D,且sin∠OCD=
12

(1)求B′的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng).若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)目的地時(shí)整個(gè)運(yùn)動(dòng)隨之結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒,連接PQ,設(shè)以P、Q、D、C為頂點(diǎn)的凸四邊形的面積為S,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,凸四邊形ABCD的四邊AB、BC、CD、和DA的長(zhǎng)分別是3,4,12,和13,∠ABC=90°,則四邊形
ABCD的面積S=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案