【題目】下面是一位同學做的四道題:①a3+a3=a6;②(xy2)3=x3y6;③x2x3=x6;④(﹣a)2÷a=﹣a.其中做對的一道題是( 。
A.①
B.②
C.③
D.④
科目:初中數(shù)學 來源: 題型:
【題目】下列命題正確的是( ).
A.等弧對等弦;B.在同圓中,相等的弦所對的圓周角相等;
C.平分弦的直徑垂直于弦;D.經(jīng)過切點的直線是圓的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調(diào)查的學生共有人.
(2)請將統(tǒng)計圖2補充完整.
(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是度.
(4)已知該校共有學生3600人,請根據(jù)調(diào)查結(jié)果估計該校喜歡健美操的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設平面內(nèi)一點到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對于一個點與等邊三角形,給出如下定義:滿足r≤d≤R的點叫做等邊三角形的中心關聯(lián)點.在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣,﹣1),C(,﹣1).
(1)已知點D(2,2),E(,1),F(,﹣1).在D,E,F中,是等邊△ABC的中心關聯(lián)點的是 ;
(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°.
①若線段AM上存在等邊△ABC的中心關聯(lián)點P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b上總存在等邊△ABC的中心關聯(lián)點;(直接寫出答案,不需過程)
(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為.當Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù),其中.
(1)求該二次函數(shù)的對稱軸方程;
(2)過動點C(0, )作直線⊥y軸.
① 當直線與拋物線只有一個公共點時, 求與的函數(shù)關系;
② 若拋物線與x軸有兩個交點,將拋物線在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象. 當=7時,直線與新的圖象恰好有三個公共點,求此時的值;
(3)若對于每一個給定的x的值,它所對應的函數(shù)值都不小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共180件,其進價和售價如表:(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 14 | 35 |
售價(元/件) | 20 | 43 |
(1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com