【題目】如圖,正方形,點為對角線上一個動點,邊上一點,且

(1)求證:;

(2)若四邊形的面積為25,試探求滿足的數(shù)量關(guān)系式;

(3)若為射線上的點,設(shè),四邊形的周長為,且,求的函數(shù)關(guān)系式.

【答案】(1)見解析;(2) ;(3)

【解析】

(1)如圖1中,作PEBCE,PFCDF.只要證明△PEB≌△PFQ即可解決問題;

(2)根據(jù)S四邊形BCQP=S四邊形CEPF即可解決問題;

(3)如圖2,過PEFAD分別交ABCDEF,易知,由,推出,由,推出,由此即可解決問題.

(1)如圖1中,作,

四邊形是正方形,

,,,

,

四邊形是矩形,,

四邊形是正方形,

,

,

,

,

(2)如圖1中,由(1)可知,四邊形是正方形,

,,,

,

,

,

(3)如圖2,過分別交,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明是個愛動腦筋的同學(xué),在發(fā)現(xiàn)教材中的用方框在日歷中移動的規(guī)律后,突發(fā)奇想,將連續(xù)的得數(shù)24,68,,排成如圖形式:并用一個十字形框架框住其中的五個數(shù),請你仔細觀察十字形框架中的數(shù)字的規(guī)律,并回答下列問題:

1)請你選擇十字框中你喜歡的任意位置的一個數(shù),將其設(shè)為x,并用含x的代數(shù)式表示十字框中五個數(shù)的和.

2)若將十字框上下左右移動,可框住另外的五個數(shù),試間:十字框能否框住和等于2015的五個數(shù),如能,請求出這五個數(shù);如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象與二次函數(shù)為常數(shù))的圖象交于兩點,且點的坐標(biāo)為.

1)求出的值及點的坐標(biāo);

2)設(shè),若時,隨著的增大而增大,且也隨著的增大而增大,求的最小值和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=5,AC=13,BC邊上的中線AD=6,則ABD的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲口袋中裝有兩個相同的小球,它們的標(biāo)號分別為2和7,乙口袋中裝有兩個相同的小球,它們的標(biāo)號分別為4和5,丙口袋中裝有三個相同的小球,它們的標(biāo)號分別為3,8,9.從這3個口袋中各隨機地取出1個小球.

1求取出的3個小球的標(biāo)號全是奇數(shù)的概率是多少?

2以取出的三個小球的標(biāo)號分別表示三條線段的長度,求這些線段能構(gòu)成三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架長2.5米的梯子AB斜靠在豎直的墻AC上,這時B到墻AC的距離為0.7米.

(1)若梯子的頂端A沿墻AC下滑0.9米至A1處,求點B向外移動的距離BB1的長;

(2)若梯子從頂端A處沿墻AC下滑的距離是點B向外移動的距離的一半,試求梯子沿墻AC下滑的距離是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在點B的左邊,線段AB的長為20cm;點C在點D的左邊,點CD在線段AB上,CD=10cm,點E是線段AC的中點,點F是線段BD的中點

1)若AC=4cm,求線段EF的長;

2)若AC=acm,用含a的式子表示線段BF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,ABC的平分線交AD于點F.若BF=12,AB=10,則AE的長為( 。

A. 10 B. 12 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E、F分別為邊BC、CD的中點,AF、DE相交于點G,則可得結(jié)論:①AFDE,②AFDE(不須證明).

1)如圖,若點E、F不是正方形ABCD的邊BCCD的中點,但滿足CEDF,則上面的結(jié)論、是否仍然成立;(請直接回答“成立”或“不成立”)

2)如圖,若點E、F分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CEDF,此時上面的結(jié)論、是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.

3)如圖,在(2)的基礎(chǔ)上,連接AEEF,若點M、N、P、Q分別為AE、EF、FD、AD的中點,請先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.

查看答案和解析>>

同步練習(xí)冊答案