【題目】如圖,四邊形ABCD是正方形,直線(xiàn)a,b,c分別通過(guò)A、D、C三點(diǎn),且a∥b∥c.若a與b之間的距離是5,b與c之間的距離是7,則正方形ABCD的面積是( 。
A.70B.74C.144D.148
【答案】B
【解析】
過(guò)A作AM⊥直線(xiàn)b于M,過(guò)D作DN⊥直線(xiàn)c于N,求出∠AMD=∠DNC=90°,AD=DC,∠1=∠3,根據(jù)AAS推出△AMD≌△CND,根據(jù)全等得出AM=CN,求出AM=CN=5,DN=7,在Rt△DNC中,由勾股定理求出DC2即可.
解:如圖:
過(guò)A作AM⊥直線(xiàn)b于M,過(guò)D作DN⊥直線(xiàn)c于N,
則∠AMD=∠DNC=90°,
∵直線(xiàn)b∥直線(xiàn)c,DN⊥直線(xiàn)c,
∴∠2+∠3=90°,
∵四邊形ABCD是正方形,
∴AD=DC,∠1+∠2=90°,
∴∠1=∠3,
在△AMD和△CND中
∴△AMD≌△CND,
∴AM=CN,
∵a與b之間的距離是5,b與c之間的距離是7,
∴AM=CN=5,DN=7,
在Rt△DNC中,由勾股定理得:DC2=DN2+CN2=72+52=74,
即正方形ABCD的面積為74,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、B、C三點(diǎn)在同一條直線(xiàn)上,∠C=50°,∠FBC=80°.問(wèn):∠DBF的平分線(xiàn)BE與AC有怎樣的位置關(guān)系?并說(shuō)明理由.
解:BE與AC一定平行.
∵D、B、C三點(diǎn)在同一條直線(xiàn)上,
∴∠DBF+∠FBC=180°( ).
又∵∠FBC=80°(已知).
∴∠DBF= .
又∵BE平分∠DBF(已知).
∴( ).
又∵∠C=50°(已知),
∴∠ =∠ ( ),
∴ ∥ .( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)銷(xiāo)一種商品,已知其每件進(jìn)價(jià)為40元,F(xiàn)在每件售價(jià)為70元,每星期可賣(mài)出500件。該商場(chǎng)通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn):若每件漲價(jià)1元,則每星期少賣(mài)出10件;若每件降價(jià)1元,則每星期多賣(mài)出m(m為正整數(shù))件。設(shè)調(diào)查價(jià)格后每星期的銷(xiāo)售利潤(rùn)為W元。
(1)設(shè)該商品每件漲價(jià)x(x為正整數(shù))元,
①若x=5,則每星期可賣(mài)出____件,每星期的銷(xiāo)售利潤(rùn)為_____元;
②當(dāng)x為何值時(shí),W最大,W的最大值是多少。
(2)設(shè)該商品每件降價(jià)y(y為正整數(shù))元,
①寫(xiě)出W與Y的函數(shù)關(guān)系式,并通過(guò)計(jì)算判斷:當(dāng)m=10時(shí)每星期銷(xiāo)售利潤(rùn)能否達(dá)到(1)中W的最大值;
②若使y=10時(shí),每星期的銷(xiāo)售利潤(rùn)W最大,直接寫(xiě)出W的最大值為_____。
(3)若每件降價(jià)5元時(shí)的每星期銷(xiāo)售利潤(rùn),不低于每件漲價(jià)15元時(shí)的每星期銷(xiāo)售利潤(rùn),求m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,DO⊥AB于點(diǎn)O,連接DA交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線(xiàn)交DO于點(diǎn)E,連接BC交DO于點(diǎn)F.
(1)求證:CE=EF;
(2)連接AF并延長(zhǎng),交⊙O于點(diǎn)G.填空:
①當(dāng)∠D的度數(shù)為 時(shí),四邊形ECFG為菱形;
②當(dāng)∠D的度數(shù)為 時(shí),四邊形ECOG為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過(guò)或不足的分別用正、負(fù)數(shù)來(lái)表示.記錄如下(單位:千克):
與標(biāo)準(zhǔn)質(zhì)量的差 | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)這些白菜中,最重的一筐比最輕的一筐重多少千克?
(2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)為超過(guò)或不足多少千克?
(3))若白菜每千克售價(jià)2.6元,則這20筐白菜可賣(mài)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在處,交AD于點(diǎn)E.
(1)試判斷△BDE的形狀,并說(shuō)明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AC為直徑的⊙O恰為△ABC的外接圓,∠ABC的平分線(xiàn)交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE∥AC交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)若AB=25,BC=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,若按圖中規(guī)律繼續(xù)下去,則∠1+∠2+…+∠n等于( )
A. n·180° B. 2n·180° C. (n-1)·180° D. (n-1)2·180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖 1,在平面直角坐標(biāo)系中,A 、B 在坐標(biāo)軸上,其中 A(0, a) ,B(b, 0)滿(mǎn)足| a 3 | 0.
(1)求 A 、 B 兩點(diǎn)的坐標(biāo);
(2)將 AB 平移到CD , A 點(diǎn)對(duì)應(yīng)點(diǎn)C(2, m) , DE 交 y 軸于 E ,若ABC 的面積等于13,求點(diǎn) E 的坐標(biāo);
(3)如圖 2,若將 AB 平移到CD ,點(diǎn) C、D 也在坐標(biāo)軸上,F 為線(xiàn)段 AB 上一動(dòng)點(diǎn),(不包括點(diǎn) A ,點(diǎn)B) ,連接OF 、FP 平分BFO ,BCP 2PCD,試探究COF,OFP ,CPF 的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com