如圖,已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D=50°,求∠BOF的度數(shù).
分析:利用平行線的性質(zhì)首先得出∠D=∠DOB=50°,即可得出∠AOD的度數(shù),再利用角平分線的性質(zhì)得出∠AOE的度數(shù),最后利用鄰補(bǔ)角關(guān)系求出∠BOF的度數(shù).
解答:解:∵AB∥CD,
∴∠D=∠DOB=50°,
∴∠AOD=180°-∠DOB=130°,
∵OE平分∠AOD,
∴∠AOE=
1
2
AOD=65°,
∵OF⊥OE于點(diǎn)O,
∴∠EOF=90°,
∴∠BOF=180°-∠EOF-∠AOE=25°.
點(diǎn)評(píng):此題主要考查了角平分線的性質(zhì)以及平行線的性質(zhì)等知識(shí),根據(jù)已知得出∠AOE的度數(shù)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA⊥OB,OC⊥OD,OE平分∠BOD,∠BOE:∠AOB=1:4,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析 數(shù)學(xué) 七年級(jí)下 (配北師大課標(biāo)) 北師大課標(biāo) 題型:044

如圖,已知:OE平分∠AOB,OD平分∠BOC,∠AOB=90°,∠EOC=70°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

如圖,已知:OE是∠BOC的平分線,OD是∠AOC的平分線,且∠AOB=160°,

則∠DOE=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D=50°,求∠BOF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案