精英家教網 > 初中數學 > 題目詳情
(2006•崇左)已知二次函數y=mx2-mx+n的圖象交x軸于A(x1,0),B(x2,0)兩點,x1<x2,交y軸的負半軸于C點,且AB=5,AC⊥BC,求此二次函數的解析式.
【答案】分析:已知AB=5,可用韋達定理表示出AB的長,可得出一個關于m、n的方程;
已知AC⊥BC,根據射影定理得出另一個關于m、n的方程;將上述兩式聯(lián)立方程組即可求得m、n的值.也就得出了二次函數的解析式.
解答:解:根據題意可知:m>0,n<0,且A、B分別在原點兩側.
根據一元二次方程根與系數的關系,得x1+x2=1,x1x2=
∵AB=5,∴|x2-x1|=5;即(x1+x22-4x1x2=25,
∴x1x2=-6,即.①
∵AC⊥BC,OC⊥x軸,
∴OC2=OA•OB,即n2=-x1x2=6,②
聯(lián)立①、②得:
,解得
即拋物線的解析式為:y=x2-x-
點評:此題要能夠根據題意分析出圖形的大概位置,然后綜合利用一元二次方程根與系數的關系和已知條件得到待定系數的方程,從而求解.
練習冊系列答案
相關習題

科目:初中數學 來源:2006年廣西崇左市中考數學試卷(解析版) 題型:解答題

(2006•崇左)如圖,在平面直角坐標系中,⊙M與x軸交于A,B兩點,AC是⊙M的直徑,過點C的直線交x軸于點D,連接BC,已知點M的坐標為,直線CD的函數解析式為y=-x+5
(1)求點D的坐標和BC的長;
(2)求點C的坐標和⊙M的半徑;
(3)求證:CD是⊙M的切線.

查看答案和解析>>

科目:初中數學 來源:2006年廣西崇左市中考數學試卷(解析版) 題型:解答題

(2006•崇左)已知二次函數y=mx2-mx+n的圖象交x軸于A(x1,0),B(x2,0)兩點,x1<x2,交y軸的負半軸于C點,且AB=5,AC⊥BC,求此二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源:2006年廣西崇左市中考數學試卷(解析版) 題型:選擇題

(2006•崇左)已知PA是⊙O的切線,A為切點,PBC是割線,且AC是⊙O的直徑,若PA=4,BC=6,則sin∠P的值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源:2006年廣西崇左市中考數學試卷(解析版) 題型:填空題

(2006•崇左)已知圓A和圓B相切,兩圓的圓心距為8cm,圓A的半徑為3cm,則圓B的半徑為    cm

查看答案和解析>>

同步練習冊答案