已知:如圖,⊙O的兩條弦AEBC相交于點(diǎn)D,連接ACBE、AOBO.若∠ACB60°,則下列結(jié)論中正確的是

[  ]
A.

AOB60°

B.

ADB60°

C.

AEB60°

D.

AEB30°

答案:C
解析:

  分析:由于已知的是圓周角的大小,則由“在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,且都等于該弧所對(duì)圓心角的一半,”可以確定圓周角∠AEB和圓心角∠AOB的大小,于是問題即可得到解決.

  解:因?yàn)椤?/FONT>ACB60°,所以∠AEB60°,∠AOB120°.

  故應(yīng)選C

  點(diǎn)評(píng):利用圓周角與圓心角的關(guān)系解題時(shí)一定要注意其前提條件是:①在同圓或等圓中;②是同弧或等弧所對(duì)的圓周角與圓心角.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、已知:如圖,⊙O的兩條弦AE、BC相交于點(diǎn)D,連接AC、BE.若∠ACB=60°,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=
12
時(shí),設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(E在F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)坐標(biāo),請寫出一個(gè)你所得到的正確結(jié)論,并說明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點(diǎn),l在直線l1精英家教網(wǎng),l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC的兩條高BE、CD相交于點(diǎn)O,且OB=OC,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O的兩條半徑OA⊥OB,C,D是
AB
的三等分點(diǎn),OC,OD分別與AB相交于點(diǎn)E,F(xiàn).求證:CD=AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,角的兩邊上的兩點(diǎn)M、N,
求作:點(diǎn)P,使點(diǎn)P到OA、OB的距離相等,且PM=PN(保留作圖痕跡)

查看答案和解析>>

同步練習(xí)冊答案