如圖,AC是圓O的直徑,PA切圓O于點A,弦BCOP,OP交圓O于點D,連接PB
(1)求證:PB是圓O的切線;
(2)若PA=3,PD=2,求圓O的半徑R的長.
(1)證明:連接OB,
∵OPBC
∴∠AOP=∠C,∠BOP=∠OBC,
∵OB=OC,
∴∠C=∠OBC,
∴∠AOP=∠BOP,
∵OA=OB,OP=OP,
∴△AOP≌△BOP,
∴∠OBP=∠OAP,
∵PA切圓O于點A,
∴∠A=90°,
∴∠OBP=90°,
即OB⊥PB,
∴PB是圓O的切線,

(2)∵PA是圓的切線,
∴OA⊥AP,
∴△AOP是直角三角形,
在Rt△AOP中,由勾股定理得,(R+2)2=R2+32
解得R=
5
4
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在梯形ABCD中,ABDC,AB>CD,K,M分別在AD,BC上,∠DAM=∠CBK.
求證:∠DMA=∠CKB.(第二屆袓沖之杯初中競賽)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F.
(1)求證:DF是⊙O的切線;
(2)連接DE,若AB=AC=13,BC=10,求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若AE=2,DE=1cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠C=90°,O是AB邊上一點,⊙O與AC、BC都相切,若BC=3,AC=4,則⊙O的半徑為( 。
A.1B.2C.
5
2
D.
12
7

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB、AC分別是⊙O的直徑和弦,D為劣弧
AC
上一點,DE⊥AB于點H,交⊙O于點E,交AC于點F,P為ED的延長線上一點.
(1)當△PCF滿足什么條件時,PC與⊙O相切.為什么?
(2)當點D在劣弧
AC
的什么位置時,才能使AD2=DE•DF.為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊙B的半徑r=1,PA、PO是⊙B的切線,A、O是切點.過點A作弦ACPO,連接CO、AO(如圖1).
(1)問△PAO與△OAC有什么關系?證明你的結(jié)論;
(2)把整個圖形放在直角坐標系中(如圖2),使OP與x軸重合,B點在y軸上.
設P(t,0),P點在x軸的正半軸上運動時,四邊形PACO的形狀隨之變化,當這圖形滿足什么條件時,四邊形PACO是菱形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上一點,且∠AED=45°.
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為3cm,AE=5cm,求∠ADE的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2下下5•三明)人圖,已知⊙O1和⊙O2相交于A、B兩點,直線二D、EF過點B交⊙O1于點二、E,交⊙O2于點D、F.
(1)求證:△A二D△AEF;
(2)若AB⊥二D,且在△AEF中,AF、AE、EF的長分別為3、o、5,求證:A二是⊙O2的切線.

查看答案和解析>>

同步練習冊答案