如圖所示,在?ABCD中,AC⊥BC,AC=BC=2,動點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C移動,過點(diǎn)P分別作PM∥AB,PN∥AD,連結(jié)AM,設(shè)AP=x,△AMP的面積為y.
(1)四邊形PMCN是不是菱形,請說明理由.
(2)寫出y與x之間的函數(shù)關(guān)系式.

解:(1)四邊形PMCN不可能是菱形,
理由:∵PM∥AB,
∴PM∥CN,
同理可得:PN∥MC,
∴四邊形PMCN是平行四邊形,
∵AC⊥BC,
∴△PCM為直角三角形,
∴PM>MC,
∴四邊形PMCN不可能是菱形;

(2)在△ACB中,
∵CA=CB=2,∠ACB=90°,
∴∠CAB=∠CBA=45°,
又∵PM∥AB,
∴∠CPM=∠CMP=45°,
∴CP=CM,
∴AP=BM=x,
∴MC=BC-BM=2-x,
S△AMP=AP×MC=x×(2-x),
∴y與x之間的函數(shù)關(guān)系式為:y=-x2+x.
分析:(1)首先得出四邊形PMCN是平行四邊形,進(jìn)而利用直角三角形的性質(zhì)得出PM>MC,即可得出四邊形PMCN不可能是菱形;
(2)利用CA=CB=2,∠ACB=90°,得出∠CAB=∠CBA=45°,進(jìn)而求出CP=CM,則AP=BM=x,MC=BC-BM=2-x,再利用三角形面積求法得出y與x之間的函數(shù)關(guān)系式.
點(diǎn)評:此題主要考查了菱形的判定以及平行四邊形的性質(zhì)和三角形面積求法和等腰三角形的性質(zhì)等知識,得出AP=BM是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點(diǎn)F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點(diǎn),E是線段BC延長線上一點(diǎn),過點(diǎn)A作AF∥BC交ED的延長線于點(diǎn)F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點(diǎn)在BC上從B點(diǎn)向C點(diǎn)運(yùn)動(不包括點(diǎn)C),點(diǎn)P的運(yùn)動速度為2cm∕s;Q點(diǎn)在AC上從C點(diǎn)向點(diǎn)A運(yùn)動(不包括點(diǎn)A),運(yùn)動速度為5cm∕s,若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時(shí)間后,P、Q兩點(diǎn)的距離為5
2
cm?
(2)經(jīng)過多長時(shí)間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊答案