【題目】為倡導(dǎo)“低碳生活”,常選擇以自行車作為代步工具.如圖1所示是一輛自行車的實物圖,車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,車輪半徑28cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2
(1)求車座點E到地面的距離;(結(jié)果精確到1cm)
(2)求車把點D到車架檔直線AB的距離.(結(jié)果精確到1cm).
【答案】
(1)解:作EF⊥AB于點F,如右圖所示,
∵AC=45cm,EC=20cm,∠EAB=75°,
∴EF=AEsin75°=(45+20)×0.9659≈63cm,
即車座點E到車架檔AB的距離是63cm,
∵車輪半徑28cm,
∴車座點E到地面的距離是63+28=91cm
(2)解:作EF⊥AB于點F,如右圖所示,
∵AC=45cm,EC=20cm,∠EAB=75°,
∴EF=AEsin75°=(45+20)×0.9659≈63cm,
即車座點E到車架檔AB的距離是63cm.
【解析】作EF⊥AB于點F,先求得AE的長度,然后依據(jù)銳角三角函數(shù)的定義可求得EF的長,最后,依據(jù)車座點E到地面的距離是EF的長+輪半徑的長求解即可;
(2)作DF⊥AB于點F,CG∥AB,CG與DF交與點G,先求得DG的長,然后再求得GF的長即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線直線,垂足為,如圖放置,過點作交直線于點,在內(nèi)取一點,連接,.
(1)若,,則_______.
(2)若,,則_______°.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格中,每個小正方形的邊長均為1個單位長度,我們將小正方形的頂點叫做格點,線段AB的端點均在格點上.
(1)將線段AB向右平移3個單位長度,得到線段A′B′,畫出平移后的線段并連接AB′和A′B,兩線段相交于點O;
(2)求證:△AOB≌△B′OA′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名工人同時加工同一種零件,現(xiàn)根據(jù)兩人7天產(chǎn)品中每天出現(xiàn)的次品數(shù)情況繪制成如下不完整的統(tǒng)計圖和表,依據(jù)圖、表信息,解答下列問題:
相關(guān)統(tǒng)計量表:
量數(shù) 人 | 眾數(shù) | 中位數(shù) | 平均數(shù) | 方差 |
甲 |
|
| 2 |
|
乙 | 1 | 1 | 1 |
次品數(shù)量統(tǒng)計表:
天數(shù) 人 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
甲 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 1 | 0 | 2 | 1 | 1 | 0 |
|
(1)補全圖、表.
(2)判斷誰出現(xiàn)次品的波動。
(3)估計乙加工該種零件30天出現(xiàn)次品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市首批一次性投放公共自行車700輛供市民租用出行,由于投入數(shù)量不夠, 導(dǎo)致出現(xiàn)需要租用卻未租到車的現(xiàn)象,現(xiàn)隨機抽取的某五天在同一時段的調(diào)查數(shù)據(jù)匯成如下表格.
請回答下列問題:
時間 | 第一天7:00﹣8:00 | 第二天7:00﹣8:00 | 第三天7:00﹣8:00 | 第四天7:00﹣8:00 | 第五天7:00﹣8:00 |
需要租用自行車卻未租到車的人數(shù)(人) | 1500 | 1200 | 1300 | 1300 | 1200 |
(1)表格中的五個數(shù)據(jù)(人數(shù))的中位數(shù)是多少?
(2)由隨機抽樣估計,平均每天在7:00-8:00 :需要租用公共自行車的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師隨機抽查了本學(xué)期學(xué)生讀課外書冊數(shù)的情況,繪制成條形統(tǒng)計圖(如圖1)和不完整的扇形圖(如圖2),其中條形統(tǒng)計圖被墨跡遮蓋了一部分.
(1)求條形統(tǒng)計圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);
(2)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒有改變,則最多補查了____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)如圖①,點M、N分別為四邊形ABCD邊AD、BC的中點,則四邊形BNDM的面積與四邊形ABCD的面積關(guān)系是 .
(2)如圖②,在四邊形ABCD中,點M、N分別為AD、BC的中點,MB交AN于點P,MC交DN于點Q,若S△四邊形MPNQ=10,則S△ABP+S△DCQ的值為多少?
(3)問題解決
在矩形ABCD中,AD=2,DC=4,點M、N為AB上兩點,且滿足BN=2AM=2MN,連接MC、MD.若點P為CD上任意一點,連接AP、NP,使得AP與DM交于點E,NP與MC交于點F,則四邊形MEPF的面積是否存最大值?若存在,請求出最大面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(t+1,t+2),點B(t+3,t+1),將點A向右平移3個長度單位,再向下平移4個長度單位得到點C.
(1)用t表示點C的坐標(biāo)為_______;用t表示點B到y軸的距離為___________;
(2)若t=1時,平移線段AB,使點A、B到坐標(biāo)軸上的點、處,指出平移的方向和距離,并求出點、的坐標(biāo);
(3)若t=0時,平移線段AB至MN(點A與點M對應(yīng)),使點M落在x軸的負半軸上,三角形MNB的面積為4,試求點M、N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com