【題目】如圖,已知AC⊥BC,BD⊥AD,AC 與BD 交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.
【答案】證明:(1)∵AC⊥BC,BD⊥AD,∴△ABC與△BAD是直角三角形,
在△ABC和△BAD中,∵ AC=BD ,AB=BA,∠ACB=∠BDA =900,
∴△ABC≌△BAD(HL)。∴BC=AD。
(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB。
∴△OAB是等腰三角形。
【解析】全等三角形的判定和性質(zhì),等腰三角形的判定。
(1)根據(jù)AC⊥BC,BD⊥AD,得出△ABC與△BAD是直角三角形,再由AC=BD,AB=BA,根據(jù)HL得出△ABC≌△BAD,即可證出BC=AD。
(2)根據(jù)△ABC≌△BAD,得出∠CAB=∠DBA,從而證出OA=OB,△OAB是等腰三角形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,點(diǎn)E是AC上一點(diǎn),連接BE.
(1)若CB=4,BE=5,求AE的長(zhǎng);
(2)如圖2,點(diǎn)D是線段BE延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)A作AF⊥BD于點(diǎn)F,連接CD、CF,當(dāng)AF=DF時(shí),求證:DC=BC;
小潔在遇到此問(wèn)題時(shí)不知道怎么下手,秦老師提示他可以過(guò)點(diǎn)C作CHCF,交DB于點(diǎn)H,先證明△AFC△BHC,然后繼續(xù)思考,并鼓勵(lì)小潔把證明過(guò)程寫(xiě)出來(lái).請(qǐng)你幫助小潔完成這個(gè)問(wèn)題的證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解決問(wèn)題:
一輛貨車(chē)從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.
(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.
(2)小明家距小彬家多遠(yuǎn)?
(3)貨車(chē)一共行駛了多少千米?
(4)貨車(chē)每千米耗油0.2升,這次共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,BD為⊙O直徑,弦AD長(zhǎng)為3,AB長(zhǎng)為5,AC平分∠DAB,則弦AC的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);
(2)若OF平分∠COE,∠BOF=15°,若設(shè)∠AOE=x°.
①用含x的代數(shù)式表示∠EOF;
②求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)直角三角形紙片ABO,放置在平面直角坐標(biāo)系中,點(diǎn)A( ,0),點(diǎn)B(0,3),點(diǎn)O(0,0)
(1)過(guò)邊OB上的動(dòng)點(diǎn)D(點(diǎn)D不與點(diǎn)B,O重合)作DE丄OB交AB于點(diǎn)E,沿著DE折疊該紙片,點(diǎn)B落在射線BO上的點(diǎn)F處.
①如圖,當(dāng)D為OB中點(diǎn)時(shí),求E點(diǎn)的坐標(biāo);
②連接AF,當(dāng)△AEF為直角三角形時(shí),求E點(diǎn)坐標(biāo);
(2)P是AB邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),將△AOP沿OP所在的直線折疊,得到△A′OP,連接BA′,當(dāng)BA′取得最小值時(shí),求P點(diǎn)坐標(biāo)(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2 . 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2 . 例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2 , 此時(shí)M=0.下列判斷: ①當(dāng)x>0時(shí),y1>y2;②當(dāng)x<0時(shí),x值越大,M值越。虎凼沟肕大于2的x值不存在;④使得M=1的x值是﹣ 或 .
其中正確的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)根據(jù)題意,填寫(xiě)下表:
重量(千克) | 0.5 | 1 | 3 | 4 | … |
甲公司 | 22 | 67 | … | ||
乙公司 | 11 | 51 | … |
(2)請(qǐng)分別寫(xiě)出甲乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(3)小明應(yīng)選擇哪家快遞公司更省錢(qián)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com